Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 42 x^{2} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.290710615396$, $\pm0.709289384604$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-13}, \sqrt{31})\) |
Galois group: | $C_2^2$ |
Jacobians: | $166$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6932$ | $48052624$ | $326939579444$ | $2253432799952896$ | $15516041194750830932$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $6974$ | $571788$ | $47482350$ | $3939040644$ | $326938785518$ | $27136050989628$ | $2252292133299934$ | $186940255267540404$ | $15516041202295808414$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 166 curves (of which all are hyperelliptic):
- $y^2=82 x^6+47 x^5+81 x^4+75 x^3+66 x^2+71 x+67$
- $y^2=81 x^6+11 x^5+79 x^4+67 x^3+49 x^2+59 x+51$
- $y^2=65 x^6+17 x^5+14 x^4+27 x^3+79 x^2+72 x+68$
- $y^2=47 x^6+34 x^5+28 x^4+54 x^3+75 x^2+61 x+53$
- $y^2=46 x^6+73 x^5+19 x^4+80 x^3+23 x^2+46 x+80$
- $y^2=24 x^6+77 x^5+8 x^4+38 x^3+13 x^2+46 x+71$
- $y^2=48 x^6+71 x^5+16 x^4+76 x^3+26 x^2+9 x+59$
- $y^2=57 x^6+75 x^4+52 x^3+54 x^2+81 x+79$
- $y^2=31 x^6+67 x^4+21 x^3+25 x^2+79 x+75$
- $y^2=75 x^6+81 x^5+74 x^4+60 x^3+11 x^2+27 x+25$
- $y^2=67 x^6+79 x^5+65 x^4+37 x^3+22 x^2+54 x+50$
- $y^2=58 x^6+2 x^5+52 x^4+6 x^3+7 x^2+24 x+68$
- $y^2=33 x^6+4 x^5+21 x^4+12 x^3+14 x^2+48 x+53$
- $y^2=76 x^6+66 x^5+23 x^4+37 x^3+11 x^2+6 x+29$
- $y^2=69 x^6+49 x^5+46 x^4+74 x^3+22 x^2+12 x+58$
- $y^2=60 x^6+58 x^5+61 x^4+2 x^3+23 x^2+4 x+54$
- $y^2=37 x^6+33 x^5+39 x^4+4 x^3+46 x^2+8 x+25$
- $y^2=46 x^6+21 x^5+58 x^4+81 x^3+82 x^2+54 x+31$
- $y^2=9 x^6+42 x^5+33 x^4+79 x^3+81 x^2+25 x+62$
- $y^2=8 x^6+39 x^5+61 x^4+82 x^3+72 x^2+22 x+35$
- and 146 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-13}, \sqrt{31})\). |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.bq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-403}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.a_abq | $4$ | (not in LMFDB) |