L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s + 5·16-s + 12·17-s − 8·25-s + 6·32-s + 24·34-s + 12·37-s + 6·49-s − 16·50-s + 7·64-s − 24·67-s + 36·68-s + 24·74-s − 24·83-s + 20·97-s + 12·98-s − 24·100-s + 8·103-s + 127-s + 8·128-s + 131-s − 48·134-s + 48·136-s + 137-s + 139-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.41·8-s + 5/4·16-s + 2.91·17-s − 8/5·25-s + 1.06·32-s + 4.11·34-s + 1.97·37-s + 6/7·49-s − 2.26·50-s + 7/8·64-s − 2.93·67-s + 4.36·68-s + 2.78·74-s − 2.63·83-s + 2.03·97-s + 1.21·98-s − 2.39·100-s + 0.788·103-s + 0.0887·127-s + 0.707·128-s + 0.0873·131-s − 4.14·134-s + 4.11·136-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(7.616481470\) |
\(L(\frac12)\) |
\(\approx\) |
\(7.616481470\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.700200193648972818391184791745, −8.839332495907355363986575409224, −8.300830374881008598755165375265, −7.87900174168093536038486652313, −7.60183039355284486323473826122, −7.38948711922697816566161799848, −6.94297007772269062955634882716, −6.16370612713282021447650225664, −6.02902169470239885384633014247, −5.61774395075118013416325273960, −5.50525367698163209615306659943, −4.77241015235792485713826823672, −4.40241357404861589527267299103, −3.99952049493026737030712255266, −3.52741934982351622745064198445, −3.03132880803659991588805893111, −2.81697088301000007007527750358, −1.99562551595579132836604768494, −1.47651064277850281396879045407, −0.78884071350329861832012015590,
0.78884071350329861832012015590, 1.47651064277850281396879045407, 1.99562551595579132836604768494, 2.81697088301000007007527750358, 3.03132880803659991588805893111, 3.52741934982351622745064198445, 3.99952049493026737030712255266, 4.40241357404861589527267299103, 4.77241015235792485713826823672, 5.50525367698163209615306659943, 5.61774395075118013416325273960, 6.02902169470239885384633014247, 6.16370612713282021447650225664, 6.94297007772269062955634882716, 7.38948711922697816566161799848, 7.60183039355284486323473826122, 7.87900174168093536038486652313, 8.300830374881008598755165375265, 8.839332495907355363986575409224, 9.700200193648972818391184791745