L(s) = 1 | − 3·3-s + 6·9-s − 4·11-s + 2·13-s − 25-s − 9·27-s + 12·33-s + 2·37-s − 6·39-s − 2·47-s − 5·49-s + 4·59-s − 16·61-s + 2·71-s + 4·73-s + 3·75-s + 9·81-s + 24·83-s + 12·97-s − 24·99-s − 24·107-s − 14·109-s − 6·111-s + 12·117-s + 6·121-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 2·9-s − 1.20·11-s + 0.554·13-s − 1/5·25-s − 1.73·27-s + 2.08·33-s + 0.328·37-s − 0.960·39-s − 0.291·47-s − 5/7·49-s + 0.520·59-s − 2.04·61-s + 0.237·71-s + 0.468·73-s + 0.346·75-s + 81-s + 2.63·83-s + 1.21·97-s − 2.41·99-s − 2.32·107-s − 1.34·109-s − 0.569·111-s + 1.10·117-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 194688 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 194688 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.021179339698169784384036403055, −8.204524590098548683092760080407, −7.84713115092968817973809581066, −7.42772728546378356970089714645, −6.74683241206376404943690251380, −6.31394879855169309643898393272, −5.99692452132684010344841520792, −5.25078367049644905669734768768, −5.11733226063913190071078900940, −4.46886074650188144710158979308, −3.82994188950258817577735192270, −3.05038675572331186615313729926, −2.12789053642440238731445150527, −1.14655538396453240872812031707, 0,
1.14655538396453240872812031707, 2.12789053642440238731445150527, 3.05038675572331186615313729926, 3.82994188950258817577735192270, 4.46886074650188144710158979308, 5.11733226063913190071078900940, 5.25078367049644905669734768768, 5.99692452132684010344841520792, 6.31394879855169309643898393272, 6.74683241206376404943690251380, 7.42772728546378356970089714645, 7.84713115092968817973809581066, 8.204524590098548683092760080407, 9.021179339698169784384036403055