Properties

Label 2.97.am_ig
Base field $\F_{97}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{97}$
Dimension:  $2$
L-polynomial:  $( 1 - 10 x + 97 x^{2} )( 1 - 2 x + 97 x^{2} )$
  $1 - 12 x + 214 x^{2} - 1164 x^{3} + 9409 x^{4}$
Frobenius angles:  $\pm0.330505784077$, $\pm0.467624736821$
Angle rank:  $2$ (numerical)
Jacobians:  $588$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $8448$ $91238400$ $835242008832$ $7836787335168000$ $73740903987394076928$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $86$ $9694$ $915158$ $88521982$ $8587164566$ $832971678046$ $80798286284438$ $7837433550186238$ $760231059010316246$ $73742412708396866014$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 588 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{97}$.

Endomorphism algebra over $\F_{97}$
The isogeny class factors as 1.97.ak $\times$ 1.97.ac and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.97.ai_gs$2$(not in LMFDB)
2.97.i_gs$2$(not in LMFDB)
2.97.m_ig$2$(not in LMFDB)