Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 18 x^{2} + 961 x^{4}$ |
| Frobenius angles: | $\pm0.203118696004$, $\pm0.796881303996$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{5}, \sqrt{-11})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $112$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $944$ | $891136$ | $887549744$ | $855847014400$ | $819628229997104$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $926$ | $29792$ | $926718$ | $28629152$ | $887595806$ | $27512614112$ | $852889624318$ | $26439622160672$ | $819628173013406$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=23 x^6+3 x^5+30 x^4+29 x^3+19 x^2+20 x$
- $y^2=7 x^6+9 x^5+28 x^4+25 x^3+26 x^2+29 x$
- $y^2=21 x^6+24 x^5+30 x^3+30 x+9$
- $y^2=12 x^6+23 x^5+14 x^4+10 x^3+20 x^2+7 x+25$
- $y^2=29 x^6+23 x^5+27 x^4+29 x^3+16 x^2+27 x+4$
- $y^2=23 x^6+22 x^5+23 x^4+2 x^3+8 x^2+x+10$
- $y^2=7 x^6+4 x^5+7 x^4+6 x^3+24 x^2+3 x+30$
- $y^2=16 x^6+30 x^5+24 x^4+23 x^3+28 x^2+30 x+12$
- $y^2=17 x^6+28 x^5+10 x^4+7 x^3+22 x^2+28 x+5$
- $y^2=24 x^6+21 x^4+8 x^3+20 x^2+21 x+6$
- $y^2=10 x^6+x^4+24 x^3+29 x^2+x+18$
- $y^2=7 x^5+26 x^4+x^3+5 x^2+22 x+30$
- $y^2=21 x^5+16 x^4+3 x^3+15 x^2+4 x+28$
- $y^2=28 x^6+18 x^5+4 x^4+4 x^3+21 x^2+11 x+7$
- $y^2=22 x^6+23 x^5+12 x^4+12 x^3+x^2+2 x+21$
- $y^2=20 x^6+3 x^5+7 x^4+28 x^3+24 x^2+8 x+1$
- $y^2=29 x^6+9 x^5+21 x^4+22 x^3+10 x^2+24 x+3$
- $y^2=16 x^6+24 x^5+30 x^4+28 x^3+7 x+1$
- $y^2=17 x^6+10 x^5+28 x^4+22 x^3+21 x+3$
- $y^2=23 x^6+7 x^5+24 x^4+26 x^3+6 x^2+17 x+21$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{2}}$.
Endomorphism algebra over $\F_{31}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{5}, \sqrt{-11})\). |
| The base change of $A$ to $\F_{31^{2}}$ is 1.961.as 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-55}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.31.a_s | $4$ | (not in LMFDB) |