| L(s) = 1 | + 2·2-s + 3·4-s + 4·7-s + 4·8-s + 8·13-s + 8·14-s + 5·16-s + 12·19-s − 8·23-s + 16·26-s + 12·28-s − 8·31-s + 6·32-s + 2·37-s + 24·38-s + 4·41-s + 8·43-s − 16·46-s + 4·47-s + 4·49-s + 24·52-s − 4·53-s + 16·56-s − 12·59-s + 24·61-s − 16·62-s + 7·64-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.51·7-s + 1.41·8-s + 2.21·13-s + 2.13·14-s + 5/4·16-s + 2.75·19-s − 1.66·23-s + 3.13·26-s + 2.26·28-s − 1.43·31-s + 1.06·32-s + 0.328·37-s + 3.89·38-s + 0.624·41-s + 1.21·43-s − 2.35·46-s + 0.583·47-s + 4/7·49-s + 3.32·52-s − 0.549·53-s + 2.13·56-s − 1.56·59-s + 3.07·61-s − 2.03·62-s + 7/8·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(10.30179650\) |
| \(L(\frac12)\) |
\(\approx\) |
\(10.30179650\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.240931339682008664823811233368, −9.235291918252385620770789855389, −8.351904345703161987307602902443, −8.266502118590967936091875153892, −7.72426871477836410663507883220, −7.48367395725392788651788867020, −7.14284119065304406861776878814, −6.45698737624112050522683710410, −6.03523087644994316540443736665, −5.74665205150198984708597417267, −5.29676547057431203415337273547, −5.19176673177871348612719735805, −4.40385530484308334981962436257, −3.96845553263633615807602578003, −3.84452367022871124691960758388, −3.20692281625611235139427726240, −2.72530765844196990624579879335, −1.97516987234776102347959159132, −1.40293693537768900664995975095, −1.10859637255207741574631887087,
1.10859637255207741574631887087, 1.40293693537768900664995975095, 1.97516987234776102347959159132, 2.72530765844196990624579879335, 3.20692281625611235139427726240, 3.84452367022871124691960758388, 3.96845553263633615807602578003, 4.40385530484308334981962436257, 5.19176673177871348612719735805, 5.29676547057431203415337273547, 5.74665205150198984708597417267, 6.03523087644994316540443736665, 6.45698737624112050522683710410, 7.14284119065304406861776878814, 7.48367395725392788651788867020, 7.72426871477836410663507883220, 8.266502118590967936091875153892, 8.351904345703161987307602902443, 9.235291918252385620770789855389, 9.240931339682008664823811233368