Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 4 x + 92 x^{2} - 188 x^{3} + 2209 x^{4}$ |
| Frobenius angles: | $\pm0.394799799915$, $\pm0.510436834756$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.18194688.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $44$ |
| Isomorphism classes: | 44 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2110$ | $5262340$ | $10828809070$ | $23784619085200$ | $52593342959913550$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $44$ | $2378$ | $104300$ | $4874214$ | $229319764$ | $10779335786$ | $506623845268$ | $23811285811966$ | $1119130481431340$ | $52599132217501418$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=39 x^6+5 x^5+39 x^4+41 x^3+4 x^2+15 x+5$
- $y^2=12 x^6+13 x^5+22 x^4+2 x^3+22 x^2+11 x+21$
- $y^2=25 x^6+44 x^5+9 x^4+22 x^3+29 x^2+8 x+16$
- $y^2=7 x^6+20 x^5+43 x^4+12 x^3+6 x^2+18 x+13$
- $y^2=38 x^6+30 x^5+6 x^4+32 x^3+9 x^2+31 x+32$
- $y^2=2 x^6+29 x^5+45 x^4+10 x^3+35 x^2+x+21$
- $y^2=19 x^6+22 x^5+18 x^4+26 x^3+2 x^2+27 x+42$
- $y^2=33 x^6+35 x^5+42 x^4+44 x^3+14 x^2+19 x+26$
- $y^2=34 x^6+5 x^5+4 x^4+11 x^3+24 x^2+14 x+19$
- $y^2=11 x^6+17 x^5+43 x^4+34 x^3+42 x^2+44 x+5$
- $y^2=8 x^6+27 x^5+19 x^4+42 x^3+3 x^2+13 x+16$
- $y^2=19 x^6+27 x^5+23 x^4+46 x^3+21 x^2+26 x+41$
- $y^2=22 x^6+6 x^5+29 x^4+14 x^3+21 x^2+25 x+11$
- $y^2=11 x^6+42 x^5+23 x^3+43 x^2+31 x+28$
- $y^2=14 x^6+16 x^5+17 x^4+44 x^3+27 x^2+32 x+14$
- $y^2=30 x^6+10 x^5+30 x^4+6 x^3+37 x^2+44 x+10$
- $y^2=29 x^6+42 x^5+32 x^4+39 x^3+32 x^2+8 x+39$
- $y^2=5 x^6+45 x^5+43 x^4+26 x^3+15 x^2+16 x+11$
- $y^2=31 x^6+6 x^5+31 x^4+25 x^3+41 x^2+22 x+45$
- $y^2=31 x^6+40 x^5+40 x^4+35 x^3+26 x^2+39 x+15$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is 4.0.18194688.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.e_do | $2$ | (not in LMFDB) |