L(s) = 1 | − 2-s + 4-s + 4·7-s − 8-s + 2·9-s − 4·14-s + 16-s − 2·18-s + 10·25-s + 4·28-s − 32-s + 2·36-s + 9·49-s − 10·50-s − 4·56-s + 8·63-s + 64-s − 2·72-s − 16·79-s − 5·81-s − 9·98-s + 10·100-s + 4·112-s + 12·113-s + 14·121-s − 8·126-s + 127-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 1.51·7-s − 0.353·8-s + 2/3·9-s − 1.06·14-s + 1/4·16-s − 0.471·18-s + 2·25-s + 0.755·28-s − 0.176·32-s + 1/3·36-s + 9/7·49-s − 1.41·50-s − 0.534·56-s + 1.00·63-s + 1/8·64-s − 0.235·72-s − 1.80·79-s − 5/9·81-s − 0.909·98-s + 100-s + 0.377·112-s + 1.12·113-s + 1.27·121-s − 0.712·126-s + 0.0887·127-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1812608 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1812608 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.239837209\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.239837209\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.80779099796685648877747579650, −7.39365854227463027857068672397, −7.16816596018324611182838551848, −6.60956708114938405912386299165, −6.27671765160795091222272193282, −5.53097302440651000338695555060, −5.24492263244224630888475633184, −4.70745779614324596405408448858, −4.37008435137565935711272996584, −3.83794294179202234322179005510, −3.03550655537649844582766040359, −2.64152822917227112231747024781, −1.82222654636608010237362416442, −1.44689560592986068146993246480, −0.75292915042365455186689429445,
0.75292915042365455186689429445, 1.44689560592986068146993246480, 1.82222654636608010237362416442, 2.64152822917227112231747024781, 3.03550655537649844582766040359, 3.83794294179202234322179005510, 4.37008435137565935711272996584, 4.70745779614324596405408448858, 5.24492263244224630888475633184, 5.53097302440651000338695555060, 6.27671765160795091222272193282, 6.60956708114938405912386299165, 7.16816596018324611182838551848, 7.39365854227463027857068672397, 7.80779099796685648877747579650