Properties

Label 4-1800e2-1.1-c1e2-0-6
Degree $4$
Conductor $3240000$
Sign $1$
Analytic cond. $206.585$
Root an. cond. $3.79118$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·19-s − 12·29-s − 20·41-s − 2·49-s + 12·61-s − 32·79-s + 4·89-s + 28·101-s + 20·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 1.83·19-s − 2.22·29-s − 3.12·41-s − 2/7·49-s + 1.53·61-s − 3.60·79-s + 0.423·89-s + 2.78·101-s + 1.91·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3240000\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(206.585\)
Root analytic conductor: \(3.79118\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3240000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8265606775\)
\(L(\frac12)\) \(\approx\) \(0.8265606775\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \) 2.7.a_c
11$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.11.a_w
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.13.a_k
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.17.a_abe
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.19.i_cc
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \) 2.23.a_s
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.29.m_dq
31$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.31.a_ck
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \) 2.37.a_abm
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \) 2.41.u_ha
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \) 2.43.a_acs
47$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \) 2.47.a_abe
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \) 2.53.a_ag
59$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.59.a_eo
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.61.am_gc
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \) 2.67.a_aeo
71$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.71.a_fm
73$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \) 2.73.a_by
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \) 2.79.bg_py
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \) 2.83.a_aw
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.89.ae_ha
97$C_2^2$ \( 1 - 190 T^{2} + p^{2} T^{4} \) 2.97.a_ahi
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.410822026805819413494941263195, −8.920615677806803358136250301106, −8.739701077698961605220149992299, −8.397014709772719297954035273539, −7.926146970154634680894983594380, −7.49167269431350425143835028422, −7.07621718091147669727850792292, −6.67702071371587925362767537663, −6.39062752872651967200390688600, −5.67779974714478237673948636374, −5.64021483342534048799871447151, −4.84673051643619427962800530776, −4.68509208498912455801695255453, −3.85701014085529805346463870366, −3.78032444591387555605570507771, −3.14479890968177729318094330638, −2.47971382103654249364889919860, −1.87289842262772597939436652973, −1.58499580014691248839901629236, −0.32308798839363023266101151492, 0.32308798839363023266101151492, 1.58499580014691248839901629236, 1.87289842262772597939436652973, 2.47971382103654249364889919860, 3.14479890968177729318094330638, 3.78032444591387555605570507771, 3.85701014085529805346463870366, 4.68509208498912455801695255453, 4.84673051643619427962800530776, 5.64021483342534048799871447151, 5.67779974714478237673948636374, 6.39062752872651967200390688600, 6.67702071371587925362767537663, 7.07621718091147669727850792292, 7.49167269431350425143835028422, 7.926146970154634680894983594380, 8.397014709772719297954035273539, 8.739701077698961605220149992299, 8.920615677806803358136250301106, 9.410822026805819413494941263195

Graph of the $Z$-function along the critical line