L(s) = 1 | − 3-s + 9-s + 6·17-s + 8·19-s + 6·25-s − 27-s + 6·41-s + 12·43-s − 2·49-s − 6·51-s − 8·57-s + 12·59-s + 8·67-s − 4·73-s − 6·75-s + 81-s + 24·83-s − 30·89-s + 16·97-s + 12·107-s + 18·113-s − 18·121-s − 6·123-s + 127-s − 12·129-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s + 1.45·17-s + 1.83·19-s + 6/5·25-s − 0.192·27-s + 0.937·41-s + 1.82·43-s − 2/7·49-s − 0.840·51-s − 1.05·57-s + 1.56·59-s + 0.977·67-s − 0.468·73-s − 0.692·75-s + 1/9·81-s + 2.63·83-s − 3.17·89-s + 1.62·97-s + 1.16·107-s + 1.69·113-s − 1.63·121-s − 0.541·123-s + 0.0887·127-s − 1.05·129-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.398280568\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.398280568\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.76739316530263355385816514886, −7.32298470506967297565608434029, −7.11506606289154294798474510531, −6.50855317188714779889187952871, −6.01847714331843988562446761363, −5.60738388214089625365048027483, −5.28125734199484584626400933368, −4.90128947700863033150107685743, −4.30128213588413378459438828678, −3.74118906396965286242291433108, −3.26000723317099701427065821647, −2.79101321048790973955235805166, −2.09175324522474104217536084092, −1.05033104564714893176072339807, −0.883271466147383615213401624957,
0.883271466147383615213401624957, 1.05033104564714893176072339807, 2.09175324522474104217536084092, 2.79101321048790973955235805166, 3.26000723317099701427065821647, 3.74118906396965286242291433108, 4.30128213588413378459438828678, 4.90128947700863033150107685743, 5.28125734199484584626400933368, 5.60738388214089625365048027483, 6.01847714331843988562446761363, 6.50855317188714779889187952871, 7.11506606289154294798474510531, 7.32298470506967297565608434029, 7.76739316530263355385816514886