Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 41 x^{2} )( 1 + 41 x^{2} )$ |
$1 - 6 x + 82 x^{2} - 246 x^{3} + 1681 x^{4}$ | |
Frobenius angles: | $\pm0.344786929280$, $\pm0.5$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $184$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1512$ | $3048192$ | $4786219368$ | $7978947379200$ | $13421046128395752$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $1810$ | $69444$ | $2823646$ | $115842276$ | $4750107442$ | $194754036996$ | $7984923676606$ | $327381968700324$ | $13422659579643730$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 184 curves (of which all are hyperelliptic):
- $y^2=13 x^6+28 x^5+38 x^4+19 x^3+9 x^2+12 x+12$
- $y^2=29 x^6+15 x^5+37 x^4+6 x^3+32 x^2+16 x+4$
- $y^2=22 x^6+2 x^5+36 x^4+39 x^3+2 x^2+20 x+35$
- $y^2=24 x^6+x^5+15 x^4+19 x^3+15 x^2+x+24$
- $y^2=6 x^6+2 x^5+22 x^4+21 x^3+19 x^2+3 x+11$
- $y^2=31 x^6+11 x^5+23 x^4+40 x^3+40 x^2+7 x+3$
- $y^2=33 x^6+29 x^5+10 x^4+38 x^3+22 x^2+15 x+14$
- $y^2=18 x^5+18 x^4+33 x+39$
- $y^2=34 x^6+23 x^5+x^4+3 x^3+9 x^2+18 x+22$
- $y^2=28 x^6+31 x^5+35 x^4+35 x^2+31 x+28$
- $y^2=20 x^6+38 x^5+5 x^4+5 x^3+20 x^2+35 x+36$
- $y^2=23 x^6+21 x^5+x^4+7 x^3+17 x^2+10 x+21$
- $y^2=11 x^5+8 x^4+39 x^3+2 x^2+38 x+11$
- $y^2=3 x^6+10 x^5+9 x^4+17 x^3+40 x^2+32 x+20$
- $y^2=34 x^6+14 x^5+12 x^4+25 x^3+38 x^2+10 x+38$
- $y^2=2 x^6+40 x^5+16 x^4+35 x^3+4 x^2+23 x+9$
- $y^2=31 x^6+26 x^5+3 x^4+19 x^3+3 x^2+26 x+31$
- $y^2=33 x^6+7 x^5+7 x^4+7 x^3+11 x^2+3 x+13$
- $y^2=7 x^6+10 x^5+39 x^4+2 x^3+23 x^2+39 x+12$
- $y^2=35 x^6+28 x^5+10 x^4+3 x^3+5 x^2+21 x+9$
- and 164 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{2}}$.
Endomorphism algebra over $\F_{41}$The isogeny class factors as 1.41.ag $\times$ 1.41.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{41^{2}}$ is 1.1681.bu $\times$ 1.1681.de. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.g_de | $2$ | (not in LMFDB) |