L(s) = 1 | − 2·5-s + 4·7-s + 4·11-s − 2·13-s + 4·19-s − 6·23-s + 5·25-s − 5·31-s − 8·35-s − 37-s − 8·41-s − 2·43-s − 4·47-s + 9·49-s + 6·53-s − 8·55-s + 3·61-s + 4·65-s − 11·67-s − 28·71-s + 14·73-s + 16·77-s − 13·79-s + 28·83-s − 6·89-s − 8·91-s − 8·95-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 1.51·7-s + 1.20·11-s − 0.554·13-s + 0.917·19-s − 1.25·23-s + 25-s − 0.898·31-s − 1.35·35-s − 0.164·37-s − 1.24·41-s − 0.304·43-s − 0.583·47-s + 9/7·49-s + 0.824·53-s − 1.07·55-s + 0.384·61-s + 0.496·65-s − 1.34·67-s − 3.32·71-s + 1.63·73-s + 1.82·77-s − 1.46·79-s + 3.07·83-s − 0.635·89-s − 0.838·91-s − 0.820·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.085582321\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.085582321\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.598965139400811704567752916848, −9.063825146922620725638963314174, −8.951297834981584285047186033021, −8.451468426737524779257643468464, −7.928349240166063164959685697382, −7.79454727188045230766938865850, −7.38349497597691632079330980808, −6.86659241874847083867447749607, −6.63363186334519995382773677609, −5.87709095707091569619648553349, −5.55478974079256793713211384708, −4.93163193188680856381261427790, −4.71741545567992137796134865458, −4.18497595772537515592320783777, −3.75952702627859515378801027724, −3.32394498754455384129707769689, −2.65606180408635787200687168914, −1.71275475893907579126943292192, −1.62597588473604705754291005042, −0.58954452528650424285732341348,
0.58954452528650424285732341348, 1.62597588473604705754291005042, 1.71275475893907579126943292192, 2.65606180408635787200687168914, 3.32394498754455384129707769689, 3.75952702627859515378801027724, 4.18497595772537515592320783777, 4.71741545567992137796134865458, 4.93163193188680856381261427790, 5.55478974079256793713211384708, 5.87709095707091569619648553349, 6.63363186334519995382773677609, 6.86659241874847083867447749607, 7.38349497597691632079330980808, 7.79454727188045230766938865850, 7.928349240166063164959685697382, 8.451468426737524779257643468464, 8.951297834981584285047186033021, 9.063825146922620725638963314174, 9.598965139400811704567752916848