Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + x + 43 x^{2} )^{2}$ |
$1 + 2 x + 87 x^{2} + 86 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.524294481342$, $\pm0.524294481342$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $47$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2025$ | $3744225$ | $6301184400$ | $11664103325625$ | $21614137955375625$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $46$ | $2020$ | $79252$ | $3411748$ | $147026506$ | $6321648310$ | $271817549182$ | $11688189073348$ | $502592668803916$ | $21611482738200100$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 47 curves (of which all are hyperelliptic):
- $y^2=x^6+14 x^3+35$
- $y^2=40 x^6+35 x^5+15 x^4+28 x^3+15 x^2+35 x+40$
- $y^2=27 x^6+6 x^5+x^4+9 x^3+x^2+6 x+27$
- $y^2=12 x^6+36 x^4+17 x^3+36 x^2+12$
- $y^2=4 x^6+40 x^5+21 x^4+30 x^3+21 x^2+40 x+4$
- $y^2=10 x^6+22 x^5+3 x^4+3 x^2+22 x+10$
- $y^2=35 x^6+17 x^5+34 x^4+15 x^3+34 x^2+17 x+35$
- $y^2=7 x^6+x^5+35 x^4+31 x^3+19 x^2+28 x+6$
- $y^2=24 x^6+6 x^5+17 x^4+14 x^3+17 x^2+6 x+24$
- $y^2=x^6+24 x^5+39 x^4+36 x^3+39 x^2+24 x+1$
- $y^2=30 x^6+5 x^5+10 x^4+5 x^3+11 x^2+19 x+4$
- $y^2=14 x^6+9 x^5+29 x^4+42 x^3+4 x^2+39 x+17$
- $y^2=30 x^6+27 x^5+20 x^4+23 x^3+20 x^2+27 x+30$
- $y^2=40 x^6+6 x^5+2 x^4+17 x^3+19 x^2+26 x+2$
- $y^2=2 x^6+32 x^4+31 x^3+32 x^2+2$
- $y^2=30 x^6+x^5+9 x^4+3 x^3+9 x^2+x+30$
- $y^2=39 x^6+41 x^5+33 x^4+22 x^3+33 x^2+41 x+39$
- $y^2=18 x^6+17 x^5+26 x^4+x^3+26 x^2+17 x+18$
- $y^2=42 x^6+40 x^4+34 x^3+40 x^2+42$
- $y^2=37 x^6+36 x^5+7 x^4+34 x^3+30 x^2+41 x+27$
- and 27 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.b 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$ |
Base change
This is a primitive isogeny class.