Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 3 x - 52 x^{2} - 183 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.105151362908$, $\pm0.771818029575$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-235})\) |
Galois group: | $C_2^2$ |
Jacobians: | $26$ |
Isomorphism classes: | 88 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3484$ | $13434304$ | $51284131600$ | $191781084328704$ | $713302521976375084$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $59$ | $3609$ | $225938$ | $13851169$ | $844548479$ | $51520737318$ | $3142746297659$ | $191707313682529$ | $11694146519265338$ | $713342912260729329$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=11 x^6+52 x^5+9 x^4+46 x^3+52 x^2+53 x+38$
- $y^2=9 x^5+53 x^4+21 x^3+21 x^2+39 x+57$
- $y^2=53 x^6+9 x^5+45 x^4+33 x^3+49 x^2+4 x+3$
- $y^2=40 x^6+32 x^4+41 x^3+24 x^2+30 x+49$
- $y^2=36 x^6+3 x^5+21 x^4+5 x^3+14 x^2+20 x+9$
- $y^2=28 x^6+x^5+15 x^4+36 x^3+41 x^2+51 x+39$
- $y^2=7 x^6+34 x^5+9 x^4+13 x^3+25 x^2+33 x+56$
- $y^2=50 x^6+44 x^5+20 x^4+29 x^3+33 x^2+8 x+40$
- $y^2=54 x^6+31 x^5+60 x^4+18 x^3+40 x^2+28 x+56$
- $y^2=48 x^6+24 x^5+47 x^4+60 x^3+13 x^2+22 x+53$
- $y^2=10 x^6+44 x^5+4 x^4+17 x^3+16 x^2+44 x+48$
- $y^2=49 x^6+23 x^5+10 x^4+5 x^3+48 x^2+43 x+26$
- $y^2=46 x^6+2 x^5+24 x^4+2 x^3+26 x^2+18 x+32$
- $y^2=34 x^6+28 x^5+53 x^4+16 x^3+38 x^2+52 x+51$
- $y^2=4 x^6+34 x^5+53 x^4+x^3+50 x^2+55 x+13$
- $y^2=24 x^6+24 x^5+46 x^4+10 x^3+6 x^2+59 x+18$
- $y^2=56 x^5+12 x^4+5 x^3+51 x^2+44 x+16$
- $y^2=16 x^6+51 x^5+40 x^4+53 x^3+28 x^2+9 x+29$
- $y^2=9 x^6+57 x^5+31 x^4+47 x^3+49 x^2+35 x+48$
- $y^2=48 x^6+60 x^5+12 x^4+x^3+19 x^2+21 x+26$
- $y^2=60 x^6+46 x^5+35 x^4+44 x^3+41 x^2+2 x+16$
- $y^2=26 x^6+48 x^4+26 x^3+29 x^2+35 x+30$
- $y^2=49 x^6+31 x^5+41 x^4+2 x^3+13 x^2+30 x+48$
- $y^2=35 x^6+46 x^5+47 x^4+x^3+23 x^2+9 x+34$
- $y^2=55 x^6+7 x^5+4 x^4+59 x^3+52 x^2+55 x+38$
- $y^2=4 x^6+23 x^5+2 x^4+x^3+8 x^2+10 x+13$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{3}}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-235})\). |
The base change of $A$ to $\F_{61^{3}}$ is 1.226981.auc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-235}) \)$)$ |
Base change
This is a primitive isogeny class.