L(s) = 1 | − 2·4-s − 12·11-s + 4·16-s − 6·17-s + 4·19-s − 25-s + 6·41-s − 2·43-s + 24·44-s + 49-s − 18·59-s − 8·64-s − 8·67-s + 12·68-s + 4·73-s − 8·76-s − 6·83-s − 12·89-s − 20·97-s + 2·100-s − 12·107-s + 24·113-s + 86·121-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 4-s − 3.61·11-s + 16-s − 1.45·17-s + 0.917·19-s − 1/5·25-s + 0.937·41-s − 0.304·43-s + 3.61·44-s + 1/7·49-s − 2.34·59-s − 64-s − 0.977·67-s + 1.45·68-s + 0.468·73-s − 0.917·76-s − 0.658·83-s − 1.27·89-s − 2.03·97-s + 1/5·100-s − 1.16·107-s + 2.25·113-s + 7.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.29298251764697241533648179098, −7.15805925524584729425198877495, −6.22235231089039947188465974061, −5.89880361188496118864247496902, −5.37953669731434672726098965475, −5.18288713324048865561083127649, −4.57429112780059186549971965551, −4.52243663618215258937754394263, −3.67044930538295279435088265727, −3.05701292571172651199468963397, −2.66361329360886394934731917597, −2.28013168161255667505063368593, −1.28972514507845589157072210561, 0, 0,
1.28972514507845589157072210561, 2.28013168161255667505063368593, 2.66361329360886394934731917597, 3.05701292571172651199468963397, 3.67044930538295279435088265727, 4.52243663618215258937754394263, 4.57429112780059186549971965551, 5.18288713324048865561083127649, 5.37953669731434672726098965475, 5.89880361188496118864247496902, 6.22235231089039947188465974061, 7.15805925524584729425198877495, 7.29298251764697241533648179098