L(s) = 1 | − 2·2-s + 2·4-s − 8·11-s − 4·16-s + 6·17-s − 16·19-s + 16·22-s − 9·25-s + 8·32-s − 12·34-s + 32·38-s + 2·41-s + 22·43-s − 16·44-s + 49-s + 18·50-s − 30·59-s − 8·64-s − 16·67-s + 12·68-s + 12·73-s − 32·76-s − 4·82-s − 18·83-s − 44·86-s + 4·89-s + 24·97-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s − 2.41·11-s − 16-s + 1.45·17-s − 3.67·19-s + 3.41·22-s − 9/5·25-s + 1.41·32-s − 2.05·34-s + 5.19·38-s + 0.312·41-s + 3.35·43-s − 2.41·44-s + 1/7·49-s + 2.54·50-s − 3.90·59-s − 64-s − 1.95·67-s + 1.45·68-s + 1.40·73-s − 3.67·76-s − 0.441·82-s − 1.97·83-s − 4.74·86-s + 0.423·89-s + 2.43·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.43939934466159987675241180651, −7.30481690380781283806945348292, −6.27218716655140034782382797882, −5.97786895192084747528753482689, −5.97692172450357958528696118657, −5.09187816380224762265303345894, −4.60343557040003079873210765536, −4.28481394661801806092561213309, −3.69161989929682443753436153368, −2.83738057526983250492336310985, −2.34130595001443635884001685756, −2.13554297795060365862589896807, −1.26608620880996381438829664536, 0, 0,
1.26608620880996381438829664536, 2.13554297795060365862589896807, 2.34130595001443635884001685756, 2.83738057526983250492336310985, 3.69161989929682443753436153368, 4.28481394661801806092561213309, 4.60343557040003079873210765536, 5.09187816380224762265303345894, 5.97692172450357958528696118657, 5.97786895192084747528753482689, 6.27218716655140034782382797882, 7.30481690380781283806945348292, 7.43939934466159987675241180651