L(s) = 1 | − 2·4-s + 12·11-s + 4·16-s + 6·17-s + 4·19-s − 25-s − 6·41-s − 2·43-s − 24·44-s + 49-s + 18·59-s − 8·64-s − 8·67-s − 12·68-s + 4·73-s − 8·76-s + 6·83-s + 12·89-s − 20·97-s + 2·100-s + 12·107-s − 24·113-s + 86·121-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 4-s + 3.61·11-s + 16-s + 1.45·17-s + 0.917·19-s − 1/5·25-s − 0.937·41-s − 0.304·43-s − 3.61·44-s + 1/7·49-s + 2.34·59-s − 64-s − 0.977·67-s − 1.45·68-s + 0.468·73-s − 0.917·76-s + 0.658·83-s + 1.27·89-s − 2.03·97-s + 1/5·100-s + 1.16·107-s − 2.25·113-s + 7.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.776148896\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.776148896\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.46920162523798836927398059161, −7.46477788862935127887709071190, −6.70886439785070977996370612854, −6.47854455196725766229052156279, −6.04902466517769458594559190180, −5.50095261947846622681824006136, −5.13832633779419862585354738180, −4.61450873119863775415893038321, −3.91235022223803928204843828241, −3.79566092998735399945677628017, −3.53265306563594616744874259894, −2.80733365210463832197294691089, −1.69414023663856774565794959548, −1.28316529913330947219949011653, −0.815221262012707277849084396531,
0.815221262012707277849084396531, 1.28316529913330947219949011653, 1.69414023663856774565794959548, 2.80733365210463832197294691089, 3.53265306563594616744874259894, 3.79566092998735399945677628017, 3.91235022223803928204843828241, 4.61450873119863775415893038321, 5.13832633779419862585354738180, 5.50095261947846622681824006136, 6.04902466517769458594559190180, 6.47854455196725766229052156279, 6.70886439785070977996370612854, 7.46477788862935127887709071190, 7.46920162523798836927398059161