L(s) = 1 | + 2·3-s + 2·7-s − 3·9-s + 6·11-s + 4·21-s − 2·25-s − 14·27-s + 12·33-s − 10·37-s − 6·41-s + 18·47-s − 11·49-s − 6·53-s − 6·63-s + 8·67-s + 30·71-s + 2·73-s − 4·75-s + 12·77-s − 4·81-s − 18·83-s − 18·99-s + 18·101-s − 24·107-s − 20·111-s + 5·121-s − 12·123-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.755·7-s − 9-s + 1.80·11-s + 0.872·21-s − 2/5·25-s − 2.69·27-s + 2.08·33-s − 1.64·37-s − 0.937·41-s + 2.62·47-s − 1.57·49-s − 0.824·53-s − 0.755·63-s + 0.977·67-s + 3.56·71-s + 0.234·73-s − 0.461·75-s + 1.36·77-s − 4/9·81-s − 1.97·83-s − 1.80·99-s + 1.79·101-s − 2.32·107-s − 1.89·111-s + 5/11·121-s − 1.08·123-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.716565710\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.716565710\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.64119659592547014020348017621, −12.79260774949218116253447878423, −12.18076313272930523904805059494, −11.81453097122860723487542585254, −11.22205287137772566045163141236, −11.06188050714278931130835766692, −10.11840936861237292359097485507, −9.488910910367242339137864165231, −9.028923537585328699644848719058, −8.719262710601381121390326388858, −8.147251333294134589241289589943, −7.78258368612211783764055171838, −6.87956446346065506508968227144, −6.40118300747641518774513522912, −5.57914016287342457069619334456, −5.01139584170422053817190847606, −3.86829114593658313986535442433, −3.60339125412276415649951407652, −2.57626542035697030839244283263, −1.68720682565910526933776948835,
1.68720682565910526933776948835, 2.57626542035697030839244283263, 3.60339125412276415649951407652, 3.86829114593658313986535442433, 5.01139584170422053817190847606, 5.57914016287342457069619334456, 6.40118300747641518774513522912, 6.87956446346065506508968227144, 7.78258368612211783764055171838, 8.147251333294134589241289589943, 8.719262710601381121390326388858, 9.028923537585328699644848719058, 9.488910910367242339137864165231, 10.11840936861237292359097485507, 11.06188050714278931130835766692, 11.22205287137772566045163141236, 11.81453097122860723487542585254, 12.18076313272930523904805059494, 12.79260774949218116253447878423, 13.64119659592547014020348017621