L(s) = 1 | + 9-s − 2·11-s + 4·23-s − 2·25-s − 6·29-s − 2·37-s + 14·43-s − 7·49-s − 14·53-s + 18·67-s − 16·71-s + 4·79-s + 81-s − 2·99-s − 2·107-s − 10·109-s − 8·113-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 1/3·9-s − 0.603·11-s + 0.834·23-s − 2/5·25-s − 1.11·29-s − 0.328·37-s + 2.13·43-s − 49-s − 1.92·53-s + 2.19·67-s − 1.89·71-s + 0.450·79-s + 1/9·81-s − 0.201·99-s − 0.193·107-s − 0.957·109-s − 0.752·113-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1806336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.64589356584638519621656218205, −7.09502129155599124603301507033, −6.93114218643772480262408292003, −6.24502149176916677075051351099, −5.87029448868965981253314090759, −5.46508321560339753948744935974, −4.92537914047315154619133471941, −4.58266607020609652820178252383, −3.99530873278142870022892327539, −3.50835424071167342504240715569, −2.98154913076128086542673020956, −2.39523984518311309620601124427, −1.80121942008171275671905320958, −1.06265784872373628984446803587, 0,
1.06265784872373628984446803587, 1.80121942008171275671905320958, 2.39523984518311309620601124427, 2.98154913076128086542673020956, 3.50835424071167342504240715569, 3.99530873278142870022892327539, 4.58266607020609652820178252383, 4.92537914047315154619133471941, 5.46508321560339753948744935974, 5.87029448868965981253314090759, 6.24502149176916677075051351099, 6.93114218643772480262408292003, 7.09502129155599124603301507033, 7.64589356584638519621656218205