Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 43 x^{2} )( 1 - 6 x + 43 x^{2} )$ |
$1 - 14 x + 134 x^{2} - 602 x^{3} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.291171725172$, $\pm0.348746511119$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $32$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1368$ | $3556800$ | $6407521848$ | $11703294720000$ | $21609504699361848$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $1922$ | $80586$ | $3423214$ | $146994990$ | $6321099314$ | $271817384442$ | $11688202187806$ | $502592669160318$ | $21611482607640482$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=13 x^6+26 x^5+39 x^3+27 x+13$
- $y^2=8 x^6+41 x^5+39 x^4+x^3+37 x^2+17 x+27$
- $y^2=42 x^6+31 x^5+20 x^4+42 x^3+20 x^2+31 x+42$
- $y^2=17 x^6+25 x^5+25 x^4+14 x^3+11 x^2+10 x+14$
- $y^2=26 x^6+10 x^5+34 x^4+39 x^3+2 x^2+35 x+18$
- $y^2=33 x^6+14 x^5+20 x^4+18 x^3+27 x^2+21 x+12$
- $y^2=7 x^6+14 x^5+27 x^4+14 x^3+27 x^2+14 x+7$
- $y^2=34 x^6+41 x^5+41 x^4+10 x^3+41 x^2+41 x+34$
- $y^2=28 x^6+36 x^5+18 x^4+7 x^3+18 x^2+36 x+28$
- $y^2=9 x^6+11 x^5+12 x^4+9 x^3+18 x^2+14 x+25$
- $y^2=5 x^6+33 x^5+31 x^3+33 x+5$
- $y^2=22 x^6+32 x^5+38 x^4+16 x^3+15 x^2+30 x+8$
- $y^2=2 x^5+20 x^4+24 x^3+18 x^2+30 x$
- $y^2=37 x^6+20 x^5+8 x^4+29 x^3+8 x^2+20 x+37$
- $y^2=41 x^6+33 x^5+14 x^4+6 x^3+35 x^2+2 x+1$
- $y^2=10 x^6+9 x^5+12 x^4+15 x^3+12 x^2+9 x+10$
- $y^2=32 x^6+10 x^5+17 x^4+10 x^3+17 x^2+10 x+32$
- $y^2=36 x^6+11 x^5+35 x^4+22 x^3+35 x^2+11 x+36$
- $y^2=18 x^6+33 x^5+35 x^4+6 x^3+35 x^2+33 x+18$
- $y^2=21 x^6+20 x^5+5 x^4+12 x^3+3 x^2+33 x+41$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ai $\times$ 1.43.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.