Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 94 x^{2} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.396687793947$, $\pm0.603312206053$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{6}, \sqrt{-53})\) |
Galois group: | $C_2^2$ |
Jacobians: | $234$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3576$ | $12787776$ | $42180382584$ | $146785049478144$ | $511116751878526776$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3670$ | $205380$ | $12113614$ | $714924300$ | $42180231526$ | $2488651484820$ | $146830479050014$ | $8662995818654940$ | $511116750456412150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 234 curves (of which all are hyperelliptic):
- $y^2=15 x^6+28 x^5+41 x^4+54 x^3+51 x^2+53 x+35$
- $y^2=30 x^6+56 x^5+23 x^4+49 x^3+43 x^2+47 x+11$
- $y^2=41 x^6+18 x^4+18 x^3+44 x^2+21 x+53$
- $y^2=23 x^6+36 x^4+36 x^3+29 x^2+42 x+47$
- $y^2=38 x^6+55 x^5+56 x^4+51 x^3+49 x^2+32 x+7$
- $y^2=17 x^6+51 x^5+53 x^4+43 x^3+39 x^2+5 x+14$
- $y^2=6 x^6+6 x^5+44 x^4+18 x^3+36 x^2+10 x+50$
- $y^2=12 x^6+12 x^5+29 x^4+36 x^3+13 x^2+20 x+41$
- $y^2=13 x^6+23 x^5+21 x^4+4 x^3+22 x^2+25 x+2$
- $y^2=26 x^6+46 x^5+42 x^4+8 x^3+44 x^2+50 x+4$
- $y^2=x^6+20 x^5+54 x^4+39 x^3+30 x^2+17 x+23$
- $y^2=2 x^6+35 x^5+41 x^4+38 x^3+26 x^2+37 x+26$
- $y^2=4 x^6+11 x^5+23 x^4+17 x^3+52 x^2+15 x+52$
- $y^2=50 x^6+11 x^5+45 x^3+5 x^2+42 x+57$
- $y^2=41 x^6+22 x^5+31 x^3+10 x^2+25 x+55$
- $y^2=45 x^6+28 x^5+56 x^4+16 x^3+43 x^2+51 x+58$
- $y^2=38 x^5+8 x^4+26 x^3+33 x^2+16 x+8$
- $y^2=17 x^5+16 x^4+52 x^3+7 x^2+32 x+16$
- $y^2=57 x^6+49 x^5+15 x^4+50 x^3+23 x^2+15 x+5$
- $y^2=55 x^6+39 x^5+30 x^4+41 x^3+46 x^2+30 x+10$
- and 214 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{6}, \sqrt{-53})\). |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.dq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-318}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.a_adq | $4$ | (not in LMFDB) |