| L(s) = 1 | − 2-s − 4-s + 3·8-s + 9-s − 4·11-s − 4·13-s − 16-s + 8·17-s − 18-s + 8·19-s + 4·22-s + 8·23-s + 25-s + 4·26-s + 4·31-s − 5·32-s − 8·34-s − 36-s − 20·37-s − 8·38-s + 12·41-s + 8·43-s + 4·44-s − 8·46-s + 16·47-s − 14·49-s − 50-s + ⋯ |
| L(s) = 1 | − 0.707·2-s − 1/2·4-s + 1.06·8-s + 1/3·9-s − 1.20·11-s − 1.10·13-s − 1/4·16-s + 1.94·17-s − 0.235·18-s + 1.83·19-s + 0.852·22-s + 1.66·23-s + 1/5·25-s + 0.784·26-s + 0.718·31-s − 0.883·32-s − 1.37·34-s − 1/6·36-s − 3.28·37-s − 1.29·38-s + 1.87·41-s + 1.21·43-s + 0.603·44-s − 1.17·46-s + 2.33·47-s − 2·49-s − 0.141·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.6643762671\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6643762671\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.9590260302, −15.8447679316, −15.4405745228, −14.4242447018, −14.1407044070, −14.0069258505, −13.0980888029, −12.6461787614, −12.3465554571, −11.7481867694, −10.7356813406, −10.6789224512, −9.93911187018, −9.52345167581, −9.19190896009, −8.32936117372, −7.66488013442, −7.50925237905, −6.93140021141, −5.55946263088, −5.23920392625, −4.73356037049, −3.51487045961, −2.78204474347, −1.14288269174,
1.14288269174, 2.78204474347, 3.51487045961, 4.73356037049, 5.23920392625, 5.55946263088, 6.93140021141, 7.50925237905, 7.66488013442, 8.32936117372, 9.19190896009, 9.52345167581, 9.93911187018, 10.6789224512, 10.7356813406, 11.7481867694, 12.3465554571, 12.6461787614, 13.0980888029, 14.0069258505, 14.1407044070, 14.4242447018, 15.4405745228, 15.8447679316, 15.9590260302