Properties

Label 4-120e2-1.1-c1e2-0-3
Degree $4$
Conductor $14400$
Sign $1$
Analytic cond. $0.918156$
Root an. cond. $0.978879$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s + 9-s − 4·11-s − 4·13-s − 16-s + 8·17-s − 18-s + 8·19-s + 4·22-s + 8·23-s + 25-s + 4·26-s + 4·31-s − 5·32-s − 8·34-s − 36-s − 20·37-s − 8·38-s + 12·41-s + 8·43-s + 4·44-s − 8·46-s + 16·47-s − 14·49-s − 50-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s + 1/3·9-s − 1.20·11-s − 1.10·13-s − 1/4·16-s + 1.94·17-s − 0.235·18-s + 1.83·19-s + 0.852·22-s + 1.66·23-s + 1/5·25-s + 0.784·26-s + 0.718·31-s − 0.883·32-s − 1.37·34-s − 1/6·36-s − 3.28·37-s − 1.29·38-s + 1.87·41-s + 1.21·43-s + 0.603·44-s − 1.17·46-s + 2.33·47-s − 2·49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.918156\)
Root analytic conductor: \(0.978879\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 14400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6643762671\)
\(L(\frac12)\) \(\approx\) \(0.6643762671\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.7.a_o
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.11.e_w
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.13.e_be
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.17.ai_bu
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.19.ai_cc
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.23.ai_bu
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.29.a_cc
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) 2.31.ae_ck
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \) 2.37.u_gs
41$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.41.am_dy
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.43.ai_dy
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.47.aq_gc
53$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.53.i_di
59$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.59.m_fu
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.61.a_eo
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \) 2.67.ay_ks
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.71.a_da
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.73.e_g
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.79.m_gc
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \) 2.83.aq_ig
89$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.89.u_kc
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.97.ae_hq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.9590260302, −15.8447679316, −15.4405745228, −14.4242447018, −14.1407044070, −14.0069258505, −13.0980888029, −12.6461787614, −12.3465554571, −11.7481867694, −10.7356813406, −10.6789224512, −9.93911187018, −9.52345167581, −9.19190896009, −8.32936117372, −7.66488013442, −7.50925237905, −6.93140021141, −5.55946263088, −5.23920392625, −4.73356037049, −3.51487045961, −2.78204474347, −1.14288269174, 1.14288269174, 2.78204474347, 3.51487045961, 4.73356037049, 5.23920392625, 5.55946263088, 6.93140021141, 7.50925237905, 7.66488013442, 8.32936117372, 9.19190896009, 9.52345167581, 9.93911187018, 10.6789224512, 10.7356813406, 11.7481867694, 12.3465554571, 12.6461787614, 13.0980888029, 14.0069258505, 14.1407044070, 14.4242447018, 15.4405745228, 15.8447679316, 15.9590260302

Graph of the $Z$-function along the critical line