L(s) = 1 | − 5·9-s − 4·13-s − 8·17-s − 10·25-s − 2·37-s − 10·41-s − 13·49-s + 10·53-s − 12·61-s − 10·73-s + 16·81-s − 28·89-s − 4·97-s + 6·101-s − 4·109-s − 16·113-s + 20·117-s − 21·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 40·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 5/3·9-s − 1.10·13-s − 1.94·17-s − 2·25-s − 0.328·37-s − 1.56·41-s − 1.85·49-s + 1.37·53-s − 1.53·61-s − 1.17·73-s + 16/9·81-s − 2.96·89-s − 0.406·97-s + 0.597·101-s − 0.383·109-s − 1.50·113-s + 1.84·117-s − 1.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 3.23·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1401856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.63038328444641392108662540104, −6.87128996838340928428011955102, −6.80384633776451202812807515048, −6.12030903110471654805823588274, −5.82178883581689735565373783633, −5.23349472450029666027504407425, −4.99215332346230383019854002961, −4.21376201769914582932538220157, −4.02829710280020734935673890824, −3.03029375981211947401207493097, −2.89850403835078783059203894645, −2.11434405903642855125926303730, −1.73636861123368070695440785373, 0, 0,
1.73636861123368070695440785373, 2.11434405903642855125926303730, 2.89850403835078783059203894645, 3.03029375981211947401207493097, 4.02829710280020734935673890824, 4.21376201769914582932538220157, 4.99215332346230383019854002961, 5.23349472450029666027504407425, 5.82178883581689735565373783633, 6.12030903110471654805823588274, 6.80384633776451202812807515048, 6.87128996838340928428011955102, 7.63038328444641392108662540104