L(s) = 1 | − 2·9-s + 8·23-s − 2·25-s + 16·31-s − 8·41-s − 7·49-s + 8·71-s + 24·73-s − 8·79-s − 5·81-s + 24·89-s + 8·103-s − 4·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 2/3·9-s + 1.66·23-s − 2/5·25-s + 2.87·31-s − 1.24·41-s − 49-s + 0.949·71-s + 2.80·73-s − 0.900·79-s − 5/9·81-s + 2.54·89-s + 0.788·103-s − 0.376·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.153·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.444043622\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.444043622\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.545940243699197452112309026094, −9.072366720648179752841300803401, −8.545436371357290455893090503111, −8.118887716777139084071953049362, −7.75085107038760568990576253414, −6.90311089622575463992498908658, −6.56049674856934005097609395622, −6.12603238503703836674830996619, −5.26799158514649832689175561102, −4.96118990897796589243612936068, −4.33002557609838729383661226785, −3.40190696506899088672966011590, −2.96613495701333264850912486308, −2.14828327896835123257603408212, −0.915315312961161516616311421919,
0.915315312961161516616311421919, 2.14828327896835123257603408212, 2.96613495701333264850912486308, 3.40190696506899088672966011590, 4.33002557609838729383661226785, 4.96118990897796589243612936068, 5.26799158514649832689175561102, 6.12603238503703836674830996619, 6.56049674856934005097609395622, 6.90311089622575463992498908658, 7.75085107038760568990576253414, 8.118887716777139084071953049362, 8.545436371357290455893090503111, 9.072366720648179752841300803401, 9.545940243699197452112309026094