Properties

Label 2-925-1.1-c1-0-46
Degree $2$
Conductor $925$
Sign $-1$
Analytic cond. $7.38616$
Root an. cond. $2.71774$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 3·7-s − 2·9-s − 5·11-s − 2·12-s − 4·13-s + 4·16-s + 4·17-s − 8·19-s + 3·21-s − 4·23-s − 5·27-s − 6·28-s + 4·29-s + 2·31-s − 5·33-s + 4·36-s − 37-s − 4·39-s − 5·41-s + 6·43-s + 10·44-s − 9·47-s + 4·48-s + 2·49-s + 4·51-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 1.13·7-s − 2/3·9-s − 1.50·11-s − 0.577·12-s − 1.10·13-s + 16-s + 0.970·17-s − 1.83·19-s + 0.654·21-s − 0.834·23-s − 0.962·27-s − 1.13·28-s + 0.742·29-s + 0.359·31-s − 0.870·33-s + 2/3·36-s − 0.164·37-s − 0.640·39-s − 0.780·41-s + 0.914·43-s + 1.50·44-s − 1.31·47-s + 0.577·48-s + 2/7·49-s + 0.560·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(925\)    =    \(5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(7.38616\)
Root analytic conductor: \(2.71774\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
37 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.691533618236397727139034060852, −8.471421016354941256803359955241, −8.222373016944275536672849141622, −7.57123135388662260649030454772, −5.94943989332909984100125223211, −5.04485018782635514558239582257, −4.47362183249546643029139662011, −3.10950868855398492563734235620, −2.06028069757458323954370127570, 0, 2.06028069757458323954370127570, 3.10950868855398492563734235620, 4.47362183249546643029139662011, 5.04485018782635514558239582257, 5.94943989332909984100125223211, 7.57123135388662260649030454772, 8.222373016944275536672849141622, 8.471421016354941256803359955241, 9.691533618236397727139034060852

Graph of the $Z$-function along the critical line