Properties

Label 2-888-1.1-c1-0-17
Degree $2$
Conductor $888$
Sign $-1$
Analytic cond. $7.09071$
Root an. cond. $2.66283$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s − 4·11-s − 2·13-s − 2·15-s − 6·17-s − 4·23-s − 25-s + 27-s + 6·29-s + 4·31-s − 4·33-s + 37-s − 2·39-s − 6·41-s − 8·43-s − 2·45-s − 8·47-s − 7·49-s − 6·51-s + 6·53-s + 8·55-s + 14·61-s + 4·65-s + 4·67-s − 4·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s − 1.20·11-s − 0.554·13-s − 0.516·15-s − 1.45·17-s − 0.834·23-s − 1/5·25-s + 0.192·27-s + 1.11·29-s + 0.718·31-s − 0.696·33-s + 0.164·37-s − 0.320·39-s − 0.937·41-s − 1.21·43-s − 0.298·45-s − 1.16·47-s − 49-s − 0.840·51-s + 0.824·53-s + 1.07·55-s + 1.79·61-s + 0.496·65-s + 0.488·67-s − 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(888\)    =    \(2^{3} \cdot 3 \cdot 37\)
Sign: $-1$
Analytic conductor: \(7.09071\)
Root analytic conductor: \(2.66283\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 888,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
37 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.838577897119997638086467874831, −8.539318554496821148342136635380, −8.187225933028884364083657365708, −7.30237423640016640017209298342, −6.43740522898978385421421574850, −5.02682421877434292524821371969, −4.29748430655277376425621516910, −3.15107523746645431705635975623, −2.15267051715435814685355305724, 0, 2.15267051715435814685355305724, 3.15107523746645431705635975623, 4.29748430655277376425621516910, 5.02682421877434292524821371969, 6.43740522898978385421421574850, 7.30237423640016640017209298342, 8.187225933028884364083657365708, 8.539318554496821148342136635380, 9.838577897119997638086467874831

Graph of the $Z$-function along the critical line