Properties

Label 2-850-1.1-c1-0-3
Degree $2$
Conductor $850$
Sign $1$
Analytic cond. $6.78728$
Root an. cond. $2.60524$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s + 4-s − 3·6-s − 2·7-s + 8-s + 6·9-s − 4·11-s − 3·12-s + 3·13-s − 2·14-s + 16-s − 17-s + 6·18-s + 3·19-s + 6·21-s − 4·22-s + 6·23-s − 3·24-s + 3·26-s − 9·27-s − 2·28-s + 9·29-s − 3·31-s + 32-s + 12·33-s − 34-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 1/2·4-s − 1.22·6-s − 0.755·7-s + 0.353·8-s + 2·9-s − 1.20·11-s − 0.866·12-s + 0.832·13-s − 0.534·14-s + 1/4·16-s − 0.242·17-s + 1.41·18-s + 0.688·19-s + 1.30·21-s − 0.852·22-s + 1.25·23-s − 0.612·24-s + 0.588·26-s − 1.73·27-s − 0.377·28-s + 1.67·29-s − 0.538·31-s + 0.176·32-s + 2.08·33-s − 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(850\)    =    \(2 \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(6.78728\)
Root analytic conductor: \(2.60524\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.194977691\)
\(L(\frac12)\) \(\approx\) \(1.194977691\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 15 T + p T^{2} \) 1.59.ap
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46570418925199429920376580209, −9.784275464323046908920314757241, −8.369885645844106625648883770383, −7.06943044381842946186852516381, −6.59981138392846208863192075593, −5.58767301501897318687391027675, −5.17464859876377144696336477541, −4.06844075693930644580697011502, −2.79262582015668274957851201942, −0.874471729084186316705636996898, 0.874471729084186316705636996898, 2.79262582015668274957851201942, 4.06844075693930644580697011502, 5.17464859876377144696336477541, 5.58767301501897318687391027675, 6.59981138392846208863192075593, 7.06943044381842946186852516381, 8.369885645844106625648883770383, 9.784275464323046908920314757241, 10.46570418925199429920376580209

Graph of the $Z$-function along the critical line