Properties

Label 850.f
Number of curves $1$
Conductor $850$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 850.f1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 850.f do not have complex multiplication.

Modular form 850.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 3 q^{3} + q^{4} - 3 q^{6} - 2 q^{7} + q^{8} + 6 q^{9} - 4 q^{11} - 3 q^{12} + 3 q^{13} - 2 q^{14} + q^{16} - q^{17} + 6 q^{18} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 850.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
850.f1 850j1 \([1, -1, 1, -255, -1503]\) \(-116930169/170\) \(-2656250\) \([]\) \(480\) \(0.13475\) \(\Gamma_0(N)\)-optimal