Properties

Label 2-8330-1.1-c1-0-63
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 8-s − 2·9-s + 10-s + 6·11-s − 12-s + 7·13-s + 15-s + 16-s − 17-s + 2·18-s − 5·19-s − 20-s − 6·22-s + 6·23-s + 24-s + 25-s − 7·26-s + 5·27-s + 3·29-s − 30-s − 5·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.353·8-s − 2/3·9-s + 0.316·10-s + 1.80·11-s − 0.288·12-s + 1.94·13-s + 0.258·15-s + 1/4·16-s − 0.242·17-s + 0.471·18-s − 1.14·19-s − 0.223·20-s − 1.27·22-s + 1.25·23-s + 0.204·24-s + 1/5·25-s − 1.37·26-s + 0.962·27-s + 0.557·29-s − 0.182·30-s − 0.898·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.282688193\)
\(L(\frac12)\) \(\approx\) \(1.282688193\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.030218370137044929724896659917, −6.87920890994416866552949192982, −6.49121340945934493945649811858, −6.05391921649844972412930385332, −5.13545086664598873141803332436, −4.01993485882416420320295950736, −3.67277250929244509135001349569, −2.55957877217888359169250522155, −1.35590575573606746687173259385, −0.72607315381442123622310730492, 0.72607315381442123622310730492, 1.35590575573606746687173259385, 2.55957877217888359169250522155, 3.67277250929244509135001349569, 4.01993485882416420320295950736, 5.13545086664598873141803332436, 6.05391921649844972412930385332, 6.49121340945934493945649811858, 6.87920890994416866552949192982, 8.030218370137044929724896659917

Graph of the $Z$-function along the critical line