Properties

Label 2-8330-1.1-c1-0-106
Degree $2$
Conductor $8330$
Sign $-1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s + 4-s + 5-s + 3·6-s − 8-s + 6·9-s − 10-s − 4·11-s − 3·12-s + 3·13-s − 3·15-s + 16-s − 17-s − 6·18-s − 3·19-s + 20-s + 4·22-s − 6·23-s + 3·24-s + 25-s − 3·26-s − 9·27-s + 9·29-s + 3·30-s + 3·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.73·3-s + 1/2·4-s + 0.447·5-s + 1.22·6-s − 0.353·8-s + 2·9-s − 0.316·10-s − 1.20·11-s − 0.866·12-s + 0.832·13-s − 0.774·15-s + 1/4·16-s − 0.242·17-s − 1.41·18-s − 0.688·19-s + 0.223·20-s + 0.852·22-s − 1.25·23-s + 0.612·24-s + 1/5·25-s − 0.588·26-s − 1.73·27-s + 1.67·29-s + 0.547·30-s + 0.538·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41202181544195242338587099006, −6.54069201317224559079984060982, −6.12364568696473731368238663487, −5.64597237858296012193640577872, −4.80748200066536741636268565663, −4.17047612738883826915177392024, −2.85719514653559564758193860695, −1.90672158329285742203290786482, −0.936828998266211293288446184145, 0, 0.936828998266211293288446184145, 1.90672158329285742203290786482, 2.85719514653559564758193860695, 4.17047612738883826915177392024, 4.80748200066536741636268565663, 5.64597237858296012193640577872, 6.12364568696473731368238663487, 6.54069201317224559079984060982, 7.41202181544195242338587099006

Graph of the $Z$-function along the critical line