Properties

Label 2-8208-1.1-c1-0-99
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·7-s − 13-s − 2·17-s + 19-s − 6·23-s − 4·25-s + 10·29-s + 4·31-s − 3·35-s + 11·37-s + 3·41-s + 10·43-s − 6·47-s + 2·49-s + 2·53-s + 14·59-s + 4·61-s − 65-s − 12·67-s − 15·71-s + 3·73-s − 14·79-s − 17·83-s − 2·85-s − 3·89-s + 3·91-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.13·7-s − 0.277·13-s − 0.485·17-s + 0.229·19-s − 1.25·23-s − 4/5·25-s + 1.85·29-s + 0.718·31-s − 0.507·35-s + 1.80·37-s + 0.468·41-s + 1.52·43-s − 0.875·47-s + 2/7·49-s + 0.274·53-s + 1.82·59-s + 0.512·61-s − 0.124·65-s − 1.46·67-s − 1.78·71-s + 0.351·73-s − 1.57·79-s − 1.86·83-s − 0.216·85-s − 0.317·89-s + 0.314·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 17 T + p T^{2} \) 1.83.r
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.42226286085077097363556254100, −6.64784415003229959179361247689, −6.09899789343223961104905847859, −5.63413077128856428108660040475, −4.46724297402061547886571837061, −4.03235000279299920147547976247, −2.83704938023478593999842614918, −2.49302392983584359950509482209, −1.20089483873441336729736932597, 0, 1.20089483873441336729736932597, 2.49302392983584359950509482209, 2.83704938023478593999842614918, 4.03235000279299920147547976247, 4.46724297402061547886571837061, 5.63413077128856428108660040475, 6.09899789343223961104905847859, 6.64784415003229959179361247689, 7.42226286085077097363556254100

Graph of the $Z$-function along the critical line