Properties

Label 2-8208-1.1-c1-0-65
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 5·7-s + 3·11-s − 4·13-s + 6·17-s − 19-s − 6·23-s + 4·25-s + 6·29-s + 7·31-s + 15·35-s − 4·37-s + 4·43-s − 6·47-s + 18·49-s + 9·53-s − 9·55-s + 14·61-s + 12·65-s − 8·67-s + 6·71-s + 5·73-s − 15·77-s − 8·79-s − 9·83-s − 18·85-s − 6·89-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.88·7-s + 0.904·11-s − 1.10·13-s + 1.45·17-s − 0.229·19-s − 1.25·23-s + 4/5·25-s + 1.11·29-s + 1.25·31-s + 2.53·35-s − 0.657·37-s + 0.609·43-s − 0.875·47-s + 18/7·49-s + 1.23·53-s − 1.21·55-s + 1.79·61-s + 1.48·65-s − 0.977·67-s + 0.712·71-s + 0.585·73-s − 1.70·77-s − 0.900·79-s − 0.987·83-s − 1.95·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.38358757941433309157886811537, −6.82724389114268771769588414100, −6.26459006680513665164692228289, −5.45362602102209231941325343695, −4.38260945001325959781926768757, −3.82652812356318507863980444107, −3.23906275861041989966018838383, −2.50649578898812531665362051268, −0.911492086845337718738869999273, 0, 0.911492086845337718738869999273, 2.50649578898812531665362051268, 3.23906275861041989966018838383, 3.82652812356318507863980444107, 4.38260945001325959781926768757, 5.45362602102209231941325343695, 6.26459006680513665164692228289, 6.82724389114268771769588414100, 7.38358757941433309157886811537

Graph of the $Z$-function along the critical line