| L(s) = 1 | − 3·5-s − 5·7-s + 3·11-s − 4·13-s + 6·17-s − 19-s − 6·23-s + 4·25-s + 6·29-s + 7·31-s + 15·35-s − 4·37-s + 4·43-s − 6·47-s + 18·49-s + 9·53-s − 9·55-s + 14·61-s + 12·65-s − 8·67-s + 6·71-s + 5·73-s − 15·77-s − 8·79-s − 9·83-s − 18·85-s − 6·89-s + ⋯ |
| L(s) = 1 | − 1.34·5-s − 1.88·7-s + 0.904·11-s − 1.10·13-s + 1.45·17-s − 0.229·19-s − 1.25·23-s + 4/5·25-s + 1.11·29-s + 1.25·31-s + 2.53·35-s − 0.657·37-s + 0.609·43-s − 0.875·47-s + 18/7·49-s + 1.23·53-s − 1.21·55-s + 1.79·61-s + 1.48·65-s − 0.977·67-s + 0.712·71-s + 0.585·73-s − 1.70·77-s − 0.900·79-s − 0.987·83-s − 1.95·85-s − 0.635·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 \) | |
| 3 | \( 1 \) | |
| 19 | \( 1 + T \) | |
| good | 5 | \( 1 + 3 T + p T^{2} \) | 1.5.d |
| 7 | \( 1 + 5 T + p T^{2} \) | 1.7.f |
| 11 | \( 1 - 3 T + p T^{2} \) | 1.11.ad |
| 13 | \( 1 + 4 T + p T^{2} \) | 1.13.e |
| 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag |
| 23 | \( 1 + 6 T + p T^{2} \) | 1.23.g |
| 29 | \( 1 - 6 T + p T^{2} \) | 1.29.ag |
| 31 | \( 1 - 7 T + p T^{2} \) | 1.31.ah |
| 37 | \( 1 + 4 T + p T^{2} \) | 1.37.e |
| 41 | \( 1 + p T^{2} \) | 1.41.a |
| 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae |
| 47 | \( 1 + 6 T + p T^{2} \) | 1.47.g |
| 53 | \( 1 - 9 T + p T^{2} \) | 1.53.aj |
| 59 | \( 1 + p T^{2} \) | 1.59.a |
| 61 | \( 1 - 14 T + p T^{2} \) | 1.61.ao |
| 67 | \( 1 + 8 T + p T^{2} \) | 1.67.i |
| 71 | \( 1 - 6 T + p T^{2} \) | 1.71.ag |
| 73 | \( 1 - 5 T + p T^{2} \) | 1.73.af |
| 79 | \( 1 + 8 T + p T^{2} \) | 1.79.i |
| 83 | \( 1 + 9 T + p T^{2} \) | 1.83.j |
| 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g |
| 97 | \( 1 - 17 T + p T^{2} \) | 1.97.ar |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.38358757941433309157886811537, −6.82724389114268771769588414100, −6.26459006680513665164692228289, −5.45362602102209231941325343695, −4.38260945001325959781926768757, −3.82652812356318507863980444107, −3.23906275861041989966018838383, −2.50649578898812531665362051268, −0.911492086845337718738869999273, 0,
0.911492086845337718738869999273, 2.50649578898812531665362051268, 3.23906275861041989966018838383, 3.82652812356318507863980444107, 4.38260945001325959781926768757, 5.45362602102209231941325343695, 6.26459006680513665164692228289, 6.82724389114268771769588414100, 7.38358757941433309157886811537