Properties

Label 2-8190-1.1-c1-0-5
Degree $2$
Conductor $8190$
Sign $1$
Analytic cond. $65.3974$
Root an. cond. $8.08687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 7-s − 8-s + 10-s − 2·11-s − 13-s + 14-s + 16-s + 4·17-s + 4·19-s − 20-s + 2·22-s − 4·23-s + 25-s + 26-s − 28-s − 10·29-s − 6·31-s − 32-s − 4·34-s + 35-s + 6·37-s − 4·38-s + 40-s + 2·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s − 0.353·8-s + 0.316·10-s − 0.603·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.970·17-s + 0.917·19-s − 0.223·20-s + 0.426·22-s − 0.834·23-s + 1/5·25-s + 0.196·26-s − 0.188·28-s − 1.85·29-s − 1.07·31-s − 0.176·32-s − 0.685·34-s + 0.169·35-s + 0.986·37-s − 0.648·38-s + 0.158·40-s + 0.304·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8190\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(65.3974\)
Root analytic conductor: \(8.08687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8190,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8187765424\)
\(L(\frac12)\) \(\approx\) \(0.8187765424\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86172877965673395221236602266, −7.30925359608274070568557733062, −6.66983534991914862336303236930, −5.56484118569708320482957705123, −5.38920652114211755539744180812, −4.05869096321962902173777700239, −3.44689266910379429397360276429, −2.61181473424212326806308749467, −1.65910979209471518797756977088, −0.49192538178864875807113600762, 0.49192538178864875807113600762, 1.65910979209471518797756977088, 2.61181473424212326806308749467, 3.44689266910379429397360276429, 4.05869096321962902173777700239, 5.38920652114211755539744180812, 5.56484118569708320482957705123, 6.66983534991914862336303236930, 7.30925359608274070568557733062, 7.86172877965673395221236602266

Graph of the $Z$-function along the critical line