Properties

Label 2-8190-1.1-c1-0-48
Degree $2$
Conductor $8190$
Sign $1$
Analytic cond. $65.3974$
Root an. cond. $8.08687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s − 7-s + 8-s + 10-s + 4·11-s − 13-s − 14-s + 16-s − 6·17-s + 20-s + 4·22-s − 4·23-s + 25-s − 26-s − 28-s + 2·29-s + 4·31-s + 32-s − 6·34-s − 35-s + 2·37-s + 40-s + 2·41-s + 8·43-s + 4·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s + 0.353·8-s + 0.316·10-s + 1.20·11-s − 0.277·13-s − 0.267·14-s + 1/4·16-s − 1.45·17-s + 0.223·20-s + 0.852·22-s − 0.834·23-s + 1/5·25-s − 0.196·26-s − 0.188·28-s + 0.371·29-s + 0.718·31-s + 0.176·32-s − 1.02·34-s − 0.169·35-s + 0.328·37-s + 0.158·40-s + 0.312·41-s + 1.21·43-s + 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8190\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(65.3974\)
Root analytic conductor: \(8.08687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8190,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.617363012\)
\(L(\frac12)\) \(\approx\) \(3.617363012\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.56879224577358620933827898952, −6.96303177994543610539733156974, −6.20796609208853362452083631728, −6.00260411757249723331297371755, −4.88805145590232112525356613820, −4.26773433357495107548315147554, −3.67986552242223756770786941545, −2.60163190553441946798733326227, −2.04009794769523594196708630223, −0.842897524720167454598179757372, 0.842897524720167454598179757372, 2.04009794769523594196708630223, 2.60163190553441946798733326227, 3.67986552242223756770786941545, 4.26773433357495107548315147554, 4.88805145590232112525356613820, 6.00260411757249723331297371755, 6.20796609208853362452083631728, 6.96303177994543610539733156974, 7.56879224577358620933827898952

Graph of the $Z$-function along the critical line