Properties

Label 2-81144-1.1-c1-0-18
Degree $2$
Conductor $81144$
Sign $1$
Analytic cond. $647.938$
Root an. cond. $25.4546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·11-s + 6·13-s − 6·17-s + 6·19-s − 23-s − 5·25-s − 2·29-s − 8·31-s + 8·37-s + 6·41-s + 10·43-s − 8·47-s + 4·53-s + 8·59-s + 14·67-s + 2·73-s − 8·79-s + 14·83-s − 10·89-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.603·11-s + 1.66·13-s − 1.45·17-s + 1.37·19-s − 0.208·23-s − 25-s − 0.371·29-s − 1.43·31-s + 1.31·37-s + 0.937·41-s + 1.52·43-s − 1.16·47-s + 0.549·53-s + 1.04·59-s + 1.71·67-s + 0.234·73-s − 0.900·79-s + 1.53·83-s − 1.05·89-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81144\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(647.938\)
Root analytic conductor: \(25.4546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.832846625\)
\(L(\frac12)\) \(\approx\) \(2.832846625\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99547648784672, −13.43941440595845, −13.03511394972825, −12.67875040421894, −11.77818346060426, −11.45297055344005, −11.07137102670688, −10.70686792950294, −9.795905079698140, −9.405547895073235, −9.037183398016819, −8.450058922917410, −7.883430606246740, −7.368774377747053, −6.745470502329921, −6.216649966327376, −5.750774899992629, −5.253804620080238, −4.333633813150680, −3.902142372076536, −3.543507036930398, −2.625041999305137, −1.984869247334284, −1.269667250853434, −0.5851987337539213, 0.5851987337539213, 1.269667250853434, 1.984869247334284, 2.625041999305137, 3.543507036930398, 3.902142372076536, 4.333633813150680, 5.253804620080238, 5.750774899992629, 6.216649966327376, 6.745470502329921, 7.368774377747053, 7.883430606246740, 8.450058922917410, 9.037183398016819, 9.405547895073235, 9.795905079698140, 10.70686792950294, 11.07137102670688, 11.45297055344005, 11.77818346060426, 12.67875040421894, 13.03511394972825, 13.43941440595845, 13.99547648784672

Graph of the $Z$-function along the critical line