| L(s)  = 1 | + 3-s     − 3·5-s     + 7-s     + 9-s         − 13-s     − 3·15-s     − 4·17-s         + 21-s     − 23-s     + 4·25-s     + 27-s     + 5·29-s     + 10·31-s         − 3·35-s     − 3·37-s     − 39-s     − 11·41-s     + 9·43-s     − 3·45-s     + 3·47-s     + 49-s     − 4·51-s     + 12·53-s             − 10·59-s     − 10·61-s     + 63-s     + 3·65-s  + ⋯ | 
| L(s)  = 1 | + 0.577·3-s     − 1.34·5-s     + 0.377·7-s     + 1/3·9-s         − 0.277·13-s     − 0.774·15-s     − 0.970·17-s         + 0.218·21-s     − 0.208·23-s     + 4/5·25-s     + 0.192·27-s     + 0.928·29-s     + 1.79·31-s         − 0.507·35-s     − 0.493·37-s     − 0.160·39-s     − 1.71·41-s     + 1.37·43-s     − 0.447·45-s     + 0.437·47-s     + 1/7·49-s     − 0.560·51-s     + 1.64·53-s             − 1.30·59-s     − 1.28·61-s     + 0.125·63-s     + 0.372·65-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 7728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 - T \) |  | 
|  | 7 | \( 1 - T \) |  | 
|  | 23 | \( 1 + T \) |  | 
| good | 5 | \( 1 + 3 T + p T^{2} \) | 1.5.d | 
|  | 11 | \( 1 + p T^{2} \) | 1.11.a | 
|  | 13 | \( 1 + T + p T^{2} \) | 1.13.b | 
|  | 17 | \( 1 + 4 T + p T^{2} \) | 1.17.e | 
|  | 19 | \( 1 + p T^{2} \) | 1.19.a | 
|  | 29 | \( 1 - 5 T + p T^{2} \) | 1.29.af | 
|  | 31 | \( 1 - 10 T + p T^{2} \) | 1.31.ak | 
|  | 37 | \( 1 + 3 T + p T^{2} \) | 1.37.d | 
|  | 41 | \( 1 + 11 T + p T^{2} \) | 1.41.l | 
|  | 43 | \( 1 - 9 T + p T^{2} \) | 1.43.aj | 
|  | 47 | \( 1 - 3 T + p T^{2} \) | 1.47.ad | 
|  | 53 | \( 1 - 12 T + p T^{2} \) | 1.53.am | 
|  | 59 | \( 1 + 10 T + p T^{2} \) | 1.59.k | 
|  | 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k | 
|  | 67 | \( 1 - 12 T + p T^{2} \) | 1.67.am | 
|  | 71 | \( 1 + 6 T + p T^{2} \) | 1.71.g | 
|  | 73 | \( 1 + 4 T + p T^{2} \) | 1.73.e | 
|  | 79 | \( 1 + 12 T + p T^{2} \) | 1.79.m | 
|  | 83 | \( 1 + 12 T + p T^{2} \) | 1.83.m | 
|  | 89 | \( 1 - 6 T + p T^{2} \) | 1.89.ag | 
|  | 97 | \( 1 - 9 T + p T^{2} \) | 1.97.aj | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−7.59965267583394120895466385026, −7.00217750434419845410448942993, −6.33582082496062884460268580844, −5.21569438121451725456142195156, −4.38789318063603582788983743599, −4.10721408376758978447161596513, −3.08400932814634790744861853224, −2.43378750100698839758206508134, −1.23347331354479212409499920845, 0, 
1.23347331354479212409499920845, 2.43378750100698839758206508134, 3.08400932814634790744861853224, 4.10721408376758978447161596513, 4.38789318063603582788983743599, 5.21569438121451725456142195156, 6.33582082496062884460268580844, 7.00217750434419845410448942993, 7.59965267583394120895466385026
