Properties

Label 2-72963-1.1-c1-0-7
Degree $2$
Conductor $72963$
Sign $1$
Analytic cond. $582.612$
Root an. cond. $24.1373$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 5-s + 5·7-s + 3·8-s − 10-s + 4·13-s − 5·14-s − 16-s + 6·17-s + 2·19-s − 20-s + 3·23-s − 4·25-s − 4·26-s − 5·28-s + 4·29-s − 7·31-s − 5·32-s − 6·34-s + 5·35-s + 5·37-s − 2·38-s + 3·40-s − 3·41-s − 7·43-s − 3·46-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.447·5-s + 1.88·7-s + 1.06·8-s − 0.316·10-s + 1.10·13-s − 1.33·14-s − 1/4·16-s + 1.45·17-s + 0.458·19-s − 0.223·20-s + 0.625·23-s − 4/5·25-s − 0.784·26-s − 0.944·28-s + 0.742·29-s − 1.25·31-s − 0.883·32-s − 1.02·34-s + 0.845·35-s + 0.821·37-s − 0.324·38-s + 0.474·40-s − 0.468·41-s − 1.06·43-s − 0.442·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72963 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72963 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72963\)    =    \(3^{2} \cdot 11^{2} \cdot 67\)
Sign: $1$
Analytic conductor: \(582.612\)
Root analytic conductor: \(24.1373\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 72963,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.766497458\)
\(L(\frac12)\) \(\approx\) \(2.766497458\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
11 \( 1 \)
67 \( 1 - T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 5 T + p T^{2} \) 1.7.af
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.97505761693259, −13.83364354330713, −13.20527798962982, −12.63584110905483, −11.94721763689433, −11.43913355365577, −11.03084336436442, −10.56470411794888, −10.00034077081168, −9.510552861662855, −9.011976432738572, −8.342633826738719, −8.077336811496671, −7.746237834404025, −7.057679500788599, −6.320930782766749, −5.437938966437345, −5.276581043305222, −4.762648141343215, −3.890905668851896, −3.572129616747844, −2.493288587336453, −1.576924580256097, −1.405254544540228, −0.6939268521130325, 0.6939268521130325, 1.405254544540228, 1.576924580256097, 2.493288587336453, 3.572129616747844, 3.890905668851896, 4.762648141343215, 5.276581043305222, 5.437938966437345, 6.320930782766749, 7.057679500788599, 7.746237834404025, 8.077336811496671, 8.342633826738719, 9.011976432738572, 9.510552861662855, 10.00034077081168, 10.56470411794888, 11.03084336436442, 11.43913355365577, 11.94721763689433, 12.63584110905483, 13.20527798962982, 13.83364354330713, 13.97505761693259

Graph of the $Z$-function along the critical line