Properties

Label 2-72128-1.1-c1-0-46
Degree $2$
Conductor $72128$
Sign $-1$
Analytic cond. $575.944$
Root an. cond. $23.9988$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 3·9-s − 2·11-s − 2·13-s + 2·17-s − 2·19-s + 23-s + 11·25-s − 2·29-s + 4·37-s − 6·41-s − 10·43-s − 12·45-s + 4·53-s − 8·55-s + 12·59-s − 8·61-s − 8·65-s + 10·67-s − 6·73-s − 12·79-s + 9·81-s + 14·83-s + 8·85-s + 6·89-s − 8·95-s − 6·97-s + ⋯
L(s)  = 1  + 1.78·5-s − 9-s − 0.603·11-s − 0.554·13-s + 0.485·17-s − 0.458·19-s + 0.208·23-s + 11/5·25-s − 0.371·29-s + 0.657·37-s − 0.937·41-s − 1.52·43-s − 1.78·45-s + 0.549·53-s − 1.07·55-s + 1.56·59-s − 1.02·61-s − 0.992·65-s + 1.22·67-s − 0.702·73-s − 1.35·79-s + 81-s + 1.53·83-s + 0.867·85-s + 0.635·89-s − 0.820·95-s − 0.609·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72128\)    =    \(2^{6} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(575.944\)
Root analytic conductor: \(23.9988\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 72128,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.41976191085705, −13.71174331689653, −13.43512406993471, −13.04583716465157, −12.43404815166447, −11.89563521503815, −11.28130808339425, −10.76879291847459, −10.11020510466776, −9.981721629630278, −9.339833151480264, −8.811151133668748, −8.353681684750622, −7.760713967919836, −6.969402849997744, −6.528113753470535, −5.942559537967180, −5.410452853584941, −5.187715442365930, −4.483559408373157, −3.448658319633598, −2.918385167064331, −2.296958658929959, −1.897989439012596, −0.9964623438255756, 0, 0.9964623438255756, 1.897989439012596, 2.296958658929959, 2.918385167064331, 3.448658319633598, 4.483559408373157, 5.187715442365930, 5.410452853584941, 5.942559537967180, 6.528113753470535, 6.969402849997744, 7.760713967919836, 8.353681684750622, 8.811151133668748, 9.339833151480264, 9.981721629630278, 10.11020510466776, 10.76879291847459, 11.28130808339425, 11.89563521503815, 12.43404815166447, 13.04583716465157, 13.43512406993471, 13.71174331689653, 14.41976191085705

Graph of the $Z$-function along the critical line