Properties

Label 2-72128-1.1-c1-0-26
Degree $2$
Conductor $72128$
Sign $1$
Analytic cond. $575.944$
Root an. cond. $23.9988$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 3·9-s + 4·11-s + 6·13-s + 2·17-s − 4·19-s + 23-s − 25-s + 2·29-s − 4·31-s + 2·37-s + 6·41-s + 12·43-s − 6·45-s − 12·47-s + 10·53-s + 8·55-s + 2·61-s + 12·65-s + 12·67-s − 8·71-s + 14·73-s − 8·79-s + 9·81-s + 4·83-s + 4·85-s − 6·89-s + ⋯
L(s)  = 1  + 0.894·5-s − 9-s + 1.20·11-s + 1.66·13-s + 0.485·17-s − 0.917·19-s + 0.208·23-s − 1/5·25-s + 0.371·29-s − 0.718·31-s + 0.328·37-s + 0.937·41-s + 1.82·43-s − 0.894·45-s − 1.75·47-s + 1.37·53-s + 1.07·55-s + 0.256·61-s + 1.48·65-s + 1.46·67-s − 0.949·71-s + 1.63·73-s − 0.900·79-s + 81-s + 0.439·83-s + 0.433·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72128\)    =    \(2^{6} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(575.944\)
Root analytic conductor: \(23.9988\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 72128,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.689634779\)
\(L(\frac12)\) \(\approx\) \(3.689634779\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.13462289281124, −13.70985889881625, −13.10929265472572, −12.75605762876298, −12.07140858585396, −11.49098205088848, −11.10949076793953, −10.71247442272541, −10.04089470029961, −9.405369647110056, −9.080038653695425, −8.556715637303515, −8.163530314320958, −7.410205358294195, −6.562298285417389, −6.320395237260760, −5.783434797069306, −5.457359103906985, −4.526101612703273, −3.846784965531129, −3.503384464331818, −2.626273459823039, −2.034127066825782, −1.305001155018095, −0.6788415626673604, 0.6788415626673604, 1.305001155018095, 2.034127066825782, 2.626273459823039, 3.503384464331818, 3.846784965531129, 4.526101612703273, 5.457359103906985, 5.783434797069306, 6.320395237260760, 6.562298285417389, 7.410205358294195, 8.163530314320958, 8.556715637303515, 9.080038653695425, 9.405369647110056, 10.04089470029961, 10.71247442272541, 11.10949076793953, 11.49098205088848, 12.07140858585396, 12.75605762876298, 13.10929265472572, 13.70985889881625, 14.13462289281124

Graph of the $Z$-function along the critical line