Properties

Label 2-6975-1.1-c1-0-69
Degree $2$
Conductor $6975$
Sign $1$
Analytic cond. $55.6956$
Root an. cond. $7.46295$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 4·7-s + 5·11-s − 6·13-s − 8·14-s − 4·16-s + 5·17-s − 5·19-s − 10·22-s + 23-s + 12·26-s + 8·28-s − 3·29-s + 31-s + 8·32-s − 10·34-s + 2·37-s + 10·38-s − 6·41-s − 6·43-s + 10·44-s − 2·46-s − 2·47-s + 9·49-s − 12·52-s − 3·53-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 1.51·7-s + 1.50·11-s − 1.66·13-s − 2.13·14-s − 16-s + 1.21·17-s − 1.14·19-s − 2.13·22-s + 0.208·23-s + 2.35·26-s + 1.51·28-s − 0.557·29-s + 0.179·31-s + 1.41·32-s − 1.71·34-s + 0.328·37-s + 1.62·38-s − 0.937·41-s − 0.914·43-s + 1.50·44-s − 0.294·46-s − 0.291·47-s + 9/7·49-s − 1.66·52-s − 0.412·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6975\)    =    \(3^{2} \cdot 5^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(55.6956\)
Root analytic conductor: \(7.46295\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6975,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.139996256\)
\(L(\frac12)\) \(\approx\) \(1.139996256\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
31 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 3 T + p T^{2} \) 1.29.d
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.161021127708632613601041998264, −7.39251305224947562546434098391, −6.97142682864840984043928965511, −6.04281997998948684861471474419, −4.90771152390593268237808766963, −4.59967887990570841247796214764, −3.50977181900326279971826472600, −2.13604229208592784510081571551, −1.68474993491626544255421354295, −0.70639465026379569436806460739, 0.70639465026379569436806460739, 1.68474993491626544255421354295, 2.13604229208592784510081571551, 3.50977181900326279971826472600, 4.59967887990570841247796214764, 4.90771152390593268237808766963, 6.04281997998948684861471474419, 6.97142682864840984043928965511, 7.39251305224947562546434098391, 8.161021127708632613601041998264

Graph of the $Z$-function along the critical line