Properties

Label 2-6300-1.1-c1-0-11
Degree $2$
Conductor $6300$
Sign $1$
Analytic cond. $50.3057$
Root an. cond. $7.09265$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 2·11-s − 4·13-s + 6·17-s + 6·19-s − 8·23-s + 2·29-s + 10·31-s − 2·37-s − 10·41-s + 4·43-s − 8·47-s + 49-s + 4·53-s + 8·59-s + 6·61-s − 12·67-s + 6·71-s + 12·73-s − 2·77-s − 8·79-s − 4·83-s + 10·89-s − 4·91-s − 8·97-s − 6·101-s + 16·103-s + ⋯
L(s)  = 1  + 0.377·7-s − 0.603·11-s − 1.10·13-s + 1.45·17-s + 1.37·19-s − 1.66·23-s + 0.371·29-s + 1.79·31-s − 0.328·37-s − 1.56·41-s + 0.609·43-s − 1.16·47-s + 1/7·49-s + 0.549·53-s + 1.04·59-s + 0.768·61-s − 1.46·67-s + 0.712·71-s + 1.40·73-s − 0.227·77-s − 0.900·79-s − 0.439·83-s + 1.05·89-s − 0.419·91-s − 0.812·97-s − 0.597·101-s + 1.57·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6300\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(50.3057\)
Root analytic conductor: \(7.09265\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6300,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.900460998\)
\(L(\frac12)\) \(\approx\) \(1.900460998\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.971034203992665878044705193594, −7.50133793506589037574542692451, −6.70426937681704147074954471218, −5.74977630435349863381252332604, −5.20373160853444557562739913721, −4.56710095336295679219255023234, −3.51538871880217009379501983822, −2.79976216618028503900862442016, −1.86141066312668178729605899630, −0.71904722085841542845310369754, 0.71904722085841542845310369754, 1.86141066312668178729605899630, 2.79976216618028503900862442016, 3.51538871880217009379501983822, 4.56710095336295679219255023234, 5.20373160853444557562739913721, 5.74977630435349863381252332604, 6.70426937681704147074954471218, 7.50133793506589037574542692451, 7.971034203992665878044705193594

Graph of the $Z$-function along the critical line