Properties

Label 2-5700-1.1-c1-0-20
Degree $2$
Conductor $5700$
Sign $1$
Analytic cond. $45.5147$
Root an. cond. $6.74646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s + 4·13-s + 2·17-s − 19-s − 2·21-s + 6·23-s − 27-s − 2·29-s + 4·37-s − 4·39-s + 2·41-s − 2·43-s + 6·47-s − 3·49-s − 2·51-s + 12·53-s + 57-s − 4·59-s + 6·61-s + 2·63-s − 12·67-s − 6·69-s + 2·73-s + 81-s + 6·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s + 1.10·13-s + 0.485·17-s − 0.229·19-s − 0.436·21-s + 1.25·23-s − 0.192·27-s − 0.371·29-s + 0.657·37-s − 0.640·39-s + 0.312·41-s − 0.304·43-s + 0.875·47-s − 3/7·49-s − 0.280·51-s + 1.64·53-s + 0.132·57-s − 0.520·59-s + 0.768·61-s + 0.251·63-s − 1.46·67-s − 0.722·69-s + 0.234·73-s + 1/9·81-s + 0.658·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(45.5147\)
Root analytic conductor: \(6.74646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.021923360\)
\(L(\frac12)\) \(\approx\) \(2.021923360\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.121962773207804684801184662954, −7.38041849681696519921818884163, −6.69798136201269317955576882250, −5.86450497854006685205296629707, −5.34760397113613354355040360032, −4.51305297219797250543328799208, −3.81155307263829007348655142833, −2.81338268548254459630772850306, −1.64071218034734377049283055699, −0.840306604869407963964462634276, 0.840306604869407963964462634276, 1.64071218034734377049283055699, 2.81338268548254459630772850306, 3.81155307263829007348655142833, 4.51305297219797250543328799208, 5.34760397113613354355040360032, 5.86450497854006685205296629707, 6.69798136201269317955576882250, 7.38041849681696519921818884163, 8.121962773207804684801184662954

Graph of the $Z$-function along the critical line