Properties

Label 2-55506-1.1-c1-0-8
Degree $2$
Conductor $55506$
Sign $1$
Analytic cond. $443.217$
Root an. cond. $21.0527$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 2·5-s − 6-s − 2·7-s − 8-s + 9-s + 2·10-s − 11-s + 12-s + 2·13-s + 2·14-s − 2·15-s + 16-s − 2·17-s − 18-s − 2·20-s − 2·21-s + 22-s − 2·23-s − 24-s − 25-s − 2·26-s + 27-s − 2·28-s + 2·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s − 0.301·11-s + 0.288·12-s + 0.554·13-s + 0.534·14-s − 0.516·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s − 0.447·20-s − 0.436·21-s + 0.213·22-s − 0.417·23-s − 0.204·24-s − 1/5·25-s − 0.392·26-s + 0.192·27-s − 0.377·28-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55506\)    =    \(2 \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(443.217\)
Root analytic conductor: \(21.0527\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55506,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.106384748\)
\(L(\frac12)\) \(\approx\) \(1.106384748\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
11 \( 1 + T \)
29 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.47661705658023, −13.96896773675812, −13.26949525501553, −12.82319482503630, −12.47932453700526, −11.71661488876298, −11.23003386310451, −10.87876295314989, −10.19658672657108, −9.548471805563999, −9.351523009825596, −8.635899844878110, −8.116795316915567, −7.707541255899814, −7.302913040569282, −6.450804879165889, −6.200053653517215, −5.397135890985754, −4.430079782056856, −3.996651332844727, −3.414133287341617, −2.702922399319136, −2.225319239946400, −1.192561941761576, −0.4261506661419606, 0.4261506661419606, 1.192561941761576, 2.225319239946400, 2.702922399319136, 3.414133287341617, 3.996651332844727, 4.430079782056856, 5.397135890985754, 6.200053653517215, 6.450804879165889, 7.302913040569282, 7.707541255899814, 8.116795316915567, 8.635899844878110, 9.351523009825596, 9.548471805563999, 10.19658672657108, 10.87876295314989, 11.23003386310451, 11.71661488876298, 12.47932453700526, 12.82319482503630, 13.26949525501553, 13.96896773675812, 14.47661705658023

Graph of the $Z$-function along the critical line