Properties

Label 2-54450-1.1-c1-0-125
Degree $2$
Conductor $54450$
Sign $-1$
Analytic cond. $434.785$
Root an. cond. $20.8515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s + 4·13-s − 14-s + 16-s − 4·19-s − 4·26-s + 28-s + 6·29-s − 10·31-s − 32-s − 8·37-s + 4·38-s + 3·41-s + 43-s + 9·47-s − 6·49-s + 4·52-s − 12·53-s − 56-s − 6·58-s − 6·59-s + 11·61-s + 10·62-s + 64-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s + 1.10·13-s − 0.267·14-s + 1/4·16-s − 0.917·19-s − 0.784·26-s + 0.188·28-s + 1.11·29-s − 1.79·31-s − 0.176·32-s − 1.31·37-s + 0.648·38-s + 0.468·41-s + 0.152·43-s + 1.31·47-s − 6/7·49-s + 0.554·52-s − 1.64·53-s − 0.133·56-s − 0.787·58-s − 0.781·59-s + 1.40·61-s + 1.27·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(434.785\)
Root analytic conductor: \(20.8515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 54450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61902501696444, −14.23151339656595, −13.79427950411885, −12.95717375837495, −12.69758478130058, −12.08860739125368, −11.40247086661555, −11.03707295393776, −10.57317946453346, −10.17590109440436, −9.352972240223342, −8.912182799365157, −8.549754724856485, −7.922327446457383, −7.495944082223447, −6.689192617923730, −6.390240999901236, −5.684026559539389, −5.107412872224182, −4.350283492147895, −3.700851721800994, −3.135378471357808, −2.215816172521502, −1.696424494368034, −0.9510485463545140, 0, 0.9510485463545140, 1.696424494368034, 2.215816172521502, 3.135378471357808, 3.700851721800994, 4.350283492147895, 5.107412872224182, 5.684026559539389, 6.390240999901236, 6.689192617923730, 7.495944082223447, 7.922327446457383, 8.549754724856485, 8.912182799365157, 9.352972240223342, 10.17590109440436, 10.57317946453346, 11.03707295393776, 11.40247086661555, 12.08860739125368, 12.69758478130058, 12.95717375837495, 13.79427950411885, 14.23151339656595, 14.61902501696444

Graph of the $Z$-function along the critical line