Properties

Label 2-54450-1.1-c1-0-118
Degree $2$
Conductor $54450$
Sign $-1$
Analytic cond. $434.785$
Root an. cond. $20.8515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s + 5·13-s + 14-s + 16-s + 3·17-s − 5·19-s − 5·26-s − 28-s − 3·29-s + 2·31-s − 32-s − 3·34-s − 5·37-s + 5·38-s + 6·41-s + 2·43-s − 6·47-s − 6·49-s + 5·52-s + 56-s + 3·58-s − 8·61-s − 2·62-s + 64-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s + 1.38·13-s + 0.267·14-s + 1/4·16-s + 0.727·17-s − 1.14·19-s − 0.980·26-s − 0.188·28-s − 0.557·29-s + 0.359·31-s − 0.176·32-s − 0.514·34-s − 0.821·37-s + 0.811·38-s + 0.937·41-s + 0.304·43-s − 0.875·47-s − 6/7·49-s + 0.693·52-s + 0.133·56-s + 0.393·58-s − 1.02·61-s − 0.254·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(434.785\)
Root analytic conductor: \(20.8515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 54450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69089978329004, −14.25216395903991, −13.63802430065681, −13.02726744788964, −12.69706363643322, −12.11699286857389, −11.35406950943299, −11.16566869287047, −10.40357597651469, −10.17216192604852, −9.465774971793058, −8.835632261264738, −8.634149688481596, −7.871763475208989, −7.502040823124428, −6.731694866518283, −6.098118199857170, −6.014256875176563, −5.045151686324946, −4.357768439722537, −3.548699833284772, −3.247158497998582, −2.297223198626108, −1.637655954788831, −0.9195899165097771, 0, 0.9195899165097771, 1.637655954788831, 2.297223198626108, 3.247158497998582, 3.548699833284772, 4.357768439722537, 5.045151686324946, 6.014256875176563, 6.098118199857170, 6.731694866518283, 7.502040823124428, 7.871763475208989, 8.634149688481596, 8.835632261264738, 9.465774971793058, 10.17216192604852, 10.40357597651469, 11.16566869287047, 11.35406950943299, 12.11699286857389, 12.69706363643322, 13.02726744788964, 13.63802430065681, 14.25216395903991, 14.69089978329004

Graph of the $Z$-function along the critical line