Properties

Label 2-544-1.1-c1-0-9
Degree $2$
Conductor $544$
Sign $1$
Analytic cond. $4.34386$
Root an. cond. $2.08419$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s + 2·7-s + 9-s − 2·11-s + 2·13-s + 4·15-s + 17-s − 4·19-s + 4·21-s + 2·23-s − 25-s − 4·27-s + 2·29-s − 10·31-s − 4·33-s + 4·35-s + 10·37-s + 4·39-s + 2·41-s − 4·43-s + 2·45-s − 3·49-s + 2·51-s + 6·53-s − 4·55-s − 8·57-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.894·5-s + 0.755·7-s + 1/3·9-s − 0.603·11-s + 0.554·13-s + 1.03·15-s + 0.242·17-s − 0.917·19-s + 0.872·21-s + 0.417·23-s − 1/5·25-s − 0.769·27-s + 0.371·29-s − 1.79·31-s − 0.696·33-s + 0.676·35-s + 1.64·37-s + 0.640·39-s + 0.312·41-s − 0.609·43-s + 0.298·45-s − 3/7·49-s + 0.280·51-s + 0.824·53-s − 0.539·55-s − 1.05·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(544\)    =    \(2^{5} \cdot 17\)
Sign: $1$
Analytic conductor: \(4.34386\)
Root analytic conductor: \(2.08419\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 544,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.436176540\)
\(L(\frac12)\) \(\approx\) \(2.436176540\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.71779368269295972220533446397, −9.768337257378259964663978784481, −8.961507486337233612981409401631, −8.255569150844395436462291316208, −7.48619775936454615878675223541, −6.15831786055430724443121244113, −5.23359945854130548308523257732, −3.94565925171278896665300057972, −2.68202815256222777860689778513, −1.76101461085344565548535643091, 1.76101461085344565548535643091, 2.68202815256222777860689778513, 3.94565925171278896665300057972, 5.23359945854130548308523257732, 6.15831786055430724443121244113, 7.48619775936454615878675223541, 8.255569150844395436462291316208, 8.961507486337233612981409401631, 9.768337257378259964663978784481, 10.71779368269295972220533446397

Graph of the $Z$-function along the critical line