Properties

Label 2-53235-1.1-c1-0-38
Degree $2$
Conductor $53235$
Sign $1$
Analytic cond. $425.083$
Root an. cond. $20.6175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 5-s + 7-s + 3·8-s + 10-s − 6·11-s − 14-s − 16-s + 2·17-s − 4·19-s + 20-s + 6·22-s + 4·23-s + 25-s − 28-s − 2·29-s − 8·31-s − 5·32-s − 2·34-s − 35-s − 10·37-s + 4·38-s − 3·40-s − 10·41-s − 2·43-s + 6·44-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.447·5-s + 0.377·7-s + 1.06·8-s + 0.316·10-s − 1.80·11-s − 0.267·14-s − 1/4·16-s + 0.485·17-s − 0.917·19-s + 0.223·20-s + 1.27·22-s + 0.834·23-s + 1/5·25-s − 0.188·28-s − 0.371·29-s − 1.43·31-s − 0.883·32-s − 0.342·34-s − 0.169·35-s − 1.64·37-s + 0.648·38-s − 0.474·40-s − 1.56·41-s − 0.304·43-s + 0.904·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 53235 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 53235 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(53235\)    =    \(3^{2} \cdot 5 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(425.083\)
Root analytic conductor: \(20.6175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 53235,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.98428954881830, −14.64646553492091, −13.76480940414807, −13.34115612169200, −13.11024474480324, −12.35298374168269, −11.98789761147165, −11.09378160884866, −10.70262219337065, −10.37093400558185, −9.930616633471559, −9.053637824852994, −8.661490394078769, −8.340686460950047, −7.586794769819370, −7.385200405241722, −6.770340875655464, −5.639719856210414, −5.302923707976870, −4.840407312759487, −4.117434476070947, −3.494653311627979, −2.762699500518753, −1.936636665743365, −1.278933228157290, 0, 0, 1.278933228157290, 1.936636665743365, 2.762699500518753, 3.494653311627979, 4.117434476070947, 4.840407312759487, 5.302923707976870, 5.639719856210414, 6.770340875655464, 7.385200405241722, 7.586794769819370, 8.340686460950047, 8.661490394078769, 9.053637824852994, 9.930616633471559, 10.37093400558185, 10.70262219337065, 11.09378160884866, 11.98789761147165, 12.35298374168269, 13.11024474480324, 13.34115612169200, 13.76480940414807, 14.64646553492091, 14.98428954881830

Graph of the $Z$-function along the critical line