Properties

Label 2-5100-1.1-c1-0-42
Degree $2$
Conductor $5100$
Sign $-1$
Analytic cond. $40.7237$
Root an. cond. $6.38151$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·7-s + 9-s + 3·11-s + 17-s − 7·19-s − 3·21-s + 4·23-s + 27-s + 29-s − 10·31-s + 3·33-s − 37-s − 3·41-s − 10·43-s + 3·47-s + 2·49-s + 51-s + 9·53-s − 7·57-s − 10·59-s − 12·61-s − 3·63-s + 10·67-s + 4·69-s + 13·73-s − 9·77-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.13·7-s + 1/3·9-s + 0.904·11-s + 0.242·17-s − 1.60·19-s − 0.654·21-s + 0.834·23-s + 0.192·27-s + 0.185·29-s − 1.79·31-s + 0.522·33-s − 0.164·37-s − 0.468·41-s − 1.52·43-s + 0.437·47-s + 2/7·49-s + 0.140·51-s + 1.23·53-s − 0.927·57-s − 1.30·59-s − 1.53·61-s − 0.377·63-s + 1.22·67-s + 0.481·69-s + 1.52·73-s − 1.02·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(40.7237\)
Root analytic conductor: \(6.38151\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5100,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
17 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.946563685026618546875150456973, −6.90626470187323969242745138520, −6.68274795487887684150063286980, −5.82111249183866710521782758890, −4.83817324431694219359420640728, −3.86073907520492917751359194527, −3.42826226605003126617965379696, −2.45300074268464511579069804932, −1.47551084524857370917520231857, 0, 1.47551084524857370917520231857, 2.45300074268464511579069804932, 3.42826226605003126617965379696, 3.86073907520492917751359194527, 4.83817324431694219359420640728, 5.82111249183866710521782758890, 6.68274795487887684150063286980, 6.90626470187323969242745138520, 7.946563685026618546875150456973

Graph of the $Z$-function along the critical line