Properties

Label 2-49725-1.1-c1-0-19
Degree $2$
Conductor $49725$
Sign $-1$
Analytic cond. $397.056$
Root an. cond. $19.9262$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 4·7-s − 3·8-s + 4·11-s − 13-s − 4·14-s − 16-s + 17-s + 4·22-s − 26-s + 4·28-s − 6·29-s − 4·31-s + 5·32-s + 34-s + 10·37-s + 2·41-s − 4·43-s − 4·44-s + 9·49-s + 52-s − 10·53-s + 12·56-s − 6·58-s + 4·59-s − 2·61-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.51·7-s − 1.06·8-s + 1.20·11-s − 0.277·13-s − 1.06·14-s − 1/4·16-s + 0.242·17-s + 0.852·22-s − 0.196·26-s + 0.755·28-s − 1.11·29-s − 0.718·31-s + 0.883·32-s + 0.171·34-s + 1.64·37-s + 0.312·41-s − 0.609·43-s − 0.603·44-s + 9/7·49-s + 0.138·52-s − 1.37·53-s + 1.60·56-s − 0.787·58-s + 0.520·59-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49725\)    =    \(3^{2} \cdot 5^{2} \cdot 13 \cdot 17\)
Sign: $-1$
Analytic conductor: \(397.056\)
Root analytic conductor: \(19.9262\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 49725,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
17 \( 1 - T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.64100422849867, −14.40645563166611, −13.62120871457784, −13.15621977066384, −12.93448834584926, −12.31874074885312, −11.92004263876033, −11.35048321504550, −10.68939779996145, −9.824909574646205, −9.609039010979293, −9.180692724466491, −8.719705004923730, −7.875869010866360, −7.253680431807374, −6.623255512624524, −6.076418800672442, −5.828709824447976, −4.987296949674145, −4.338956432330609, −3.800732514629996, −3.332946509122016, −2.811759613903147, −1.844968004019015, −0.8073281042990971, 0, 0.8073281042990971, 1.844968004019015, 2.811759613903147, 3.332946509122016, 3.800732514629996, 4.338956432330609, 4.987296949674145, 5.828709824447976, 6.076418800672442, 6.623255512624524, 7.253680431807374, 7.875869010866360, 8.719705004923730, 9.180692724466491, 9.609039010979293, 9.824909574646205, 10.68939779996145, 11.35048321504550, 11.92004263876033, 12.31874074885312, 12.93448834584926, 13.15621977066384, 13.62120871457784, 14.40645563166611, 14.64100422849867

Graph of the $Z$-function along the critical line