Properties

Label 2-46800-1.1-c1-0-11
Degree $2$
Conductor $46800$
Sign $1$
Analytic cond. $373.699$
Root an. cond. $19.3313$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 4·11-s + 13-s − 8·17-s + 2·19-s + 4·23-s − 8·29-s − 10·31-s − 6·37-s + 6·41-s − 8·43-s − 8·47-s − 3·49-s + 12·53-s + 4·59-s + 10·61-s + 2·67-s − 6·73-s − 8·77-s − 12·79-s − 4·83-s − 6·89-s + 2·91-s + 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.755·7-s − 1.20·11-s + 0.277·13-s − 1.94·17-s + 0.458·19-s + 0.834·23-s − 1.48·29-s − 1.79·31-s − 0.986·37-s + 0.937·41-s − 1.21·43-s − 1.16·47-s − 3/7·49-s + 1.64·53-s + 0.520·59-s + 1.28·61-s + 0.244·67-s − 0.702·73-s − 0.911·77-s − 1.35·79-s − 0.439·83-s − 0.635·89-s + 0.209·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(46800\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(373.699\)
Root analytic conductor: \(19.3313\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 46800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.061746018\)
\(L(\frac12)\) \(\approx\) \(1.061746018\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.73965818489829, −14.14097515618142, −13.28430312427330, −13.11622789953170, −12.88712669435242, −11.83531169347452, −11.41672290423850, −10.92324403764814, −10.71460499021361, −9.895415125024798, −9.316658793049544, −8.704251145256600, −8.389374118682691, −7.693206058198613, −7.038971744613669, −6.857115549817335, −5.741989065247096, −5.388336304271782, −4.885364089617596, −4.189538271691552, −3.559474524289517, −2.773315007187946, −2.049006932040848, −1.592307928121322, −0.3473046434064016, 0.3473046434064016, 1.592307928121322, 2.049006932040848, 2.773315007187946, 3.559474524289517, 4.189538271691552, 4.885364089617596, 5.388336304271782, 5.741989065247096, 6.857115549817335, 7.038971744613669, 7.693206058198613, 8.389374118682691, 8.704251145256600, 9.316658793049544, 9.895415125024798, 10.71460499021361, 10.92324403764814, 11.41672290423850, 11.83531169347452, 12.88712669435242, 13.11622789953170, 13.28430312427330, 14.14097515618142, 14.73965818489829

Graph of the $Z$-function along the critical line